WPILibC++ 2023.4.3
Eigen::MatrixBase< Derived > Class Template Reference

Base class for all dense matrices, vectors, and expressions. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/Core/MatrixBase.h>

Inheritance diagram for Eigen::MatrixBase< Derived >:
Eigen::DenseBase< Derived > Eigen::DenseCoeffsBase< Derived, internal::accessors_level< Derived >::value >

Classes

struct  ConstDiagonalIndexReturnType
 
struct  ConstSelfAdjointViewReturnType
 
struct  ConstTriangularViewReturnType
 
struct  cross_product_return_type
 
struct  DiagonalIndexReturnType
 
struct  SelfAdjointViewReturnType
 
struct  TriangularViewReturnType
 

Public Types

enum  { HomogeneousReturnTypeDirection }
 
enum  { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }
 
typedef MatrixBase StorageBaseType
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::packet_traits< Scalar >::type PacketScalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef DenseBase< Derived > Base
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef Base::ConstTransposeReturnType ConstTransposeReturnType
 
typedef Base::RowXpr RowXpr
 
typedef Base::ColXpr ColXpr
 
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> SquareMatrixType
 type of the equivalent square matrix More...
 
typedef Base::PlainObject PlainObject
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
typedef Matrix< std::complex< RealScalar >, internal::traits< Derived >::ColsAtCompileTime, 1, ColMajorEigenvaluesReturnType
 
typedef CwiseNullaryOp< internal::scalar_identity_op< Scalar >, PlainObjectIdentityReturnType
 
typedef Block< const CwiseNullaryOp< internal::scalar_identity_op< Scalar >, SquareMatrixType >, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTimeBasisReturnType
 
typedef Diagonal< Derived > DiagonalReturnType
 
typedef internal::add_const< Diagonal< constDerived > >::type ConstDiagonalReturnType
 
typedef Diagonal< Derived, DynamicIndexDiagonalDynamicIndexReturnType
 
typedef internal::add_const< Diagonal< constDerived, DynamicIndex > >::type ConstDiagonalDynamicIndexReturnType
 
typedef Homogeneous< Derived, HomogeneousReturnTypeDirectionHomogeneousReturnType
 
typedef Block< const Derived, internal::traits< Derived >::ColsAtCompileTime==1 ? SizeMinusOne :1, internal::traits< Derived >::ColsAtCompileTime==1 ? 1 :SizeMinusOneConstStartMinusOne
 
typedef internal::stem_function< Scalar >::type StemFunction
 
- Public Types inherited from Eigen::DenseBase< Derived >
enum  {
  RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime , ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime , SizeAtCompileTime , MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime , MaxSizeAtCompileTime , IsVectorAtCompileTime , NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2 ,
  Flags = internal::traits<Derived>::Flags , IsRowMajor = int(Flags) & RowMajorBit , InnerSizeAtCompileTime , InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret ,
  OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
}
 
enum  { IsPlainObjectBase = 0 }
 
typedef Eigen::InnerIterator< Derived > InnerIterator
 Inner iterator type to iterate over the coefficients of a row or column. More...
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 The type used to store indices. More...
 
typedef internal::traits< Derived >::Scalar Scalar
 The numeric type of the expression' coefficients, e.g. More...
 
typedef Scalar value_type
 The numeric type of the expression' coefficients, e.g. More...
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef DenseCoeffsBase< Derived, internal::accessors_level< Derived >::valueBase
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef internal::find_best_packet< Scalar, SizeAtCompileTime >::type PacketScalar
 
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainMatrix
 The plain matrix type corresponding to this expression. More...
 
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainArray
 The plain array type corresponding to this expression. More...
 
typedef internal::conditional< internal::is_same< typenameinternal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArray >::type PlainObject
 The plain matrix or array type corresponding to this expression. More...
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectRandomAccessLinSpacedReturnType
 
typedef Matrix< typename NumTraits< typename internal::traits< Derived >::Scalar >::Real, internal::traits< Derived >::ColsAtCompileTime, 1 > EigenvaluesReturnType
 
typedef Transpose< Derived > TransposeReturnType
 
typedef internal::add_const< Transpose< constDerived > >::type ConstTransposeReturnType
 
typedef internal::add_const_on_value_type< typenameinternal::eval< Derived >::type >::type EvalReturnType
 
typedef VectorwiseOp< Derived, HorizontalRowwiseReturnType
 
typedef const VectorwiseOp< const Derived, HorizontalConstRowwiseReturnType
 
typedef VectorwiseOp< Derived, VerticalColwiseReturnType
 
typedef const VectorwiseOp< const Derived, VerticalConstColwiseReturnType
 
typedef CwiseNullaryOp< internal::scalar_random_op< Scalar >, PlainObjectRandomReturnType
 
typedef Reverse< Derived, BothDirectionsReverseReturnType
 
typedef const Reverse< const Derived, BothDirectionsConstReverseReturnType
 
typedef internal::conditional<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< Derived >, internal::generic_randaccess_stl_iterator< Derived > >::type iterator_type
 
typedef internal::conditional<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< constDerived >, internal::generic_randaccess_stl_iterator< constDerived > >::type const_iterator_type
 
typedef internal::conditional< IsVectorAtCompileTime, iterator_type, void >::type iterator
 
typedef internal::conditional< IsVectorAtCompileTime, const_iterator_type, void >::type const_iterator
 

Public Member Functions

EIGEN_DEVICE_FUNC Index diagonalSize () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const MatrixBase &other)
 Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1) More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator+= (const MatrixBase< OtherDerived > &other)
 replaces *this by *this + other. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator-= (const MatrixBase< OtherDerived > &other)
 replaces *this by *this - other. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
Derived & operator*= (const EigenBase< OtherDerived > &other)
 replaces *this by *this * other. More...
 
template<typename OtherDerived >
void applyOnTheLeft (const EigenBase< OtherDerived > &other)
 replaces *this by other * *this. More...
 
template<typename OtherDerived >
void applyOnTheRight (const EigenBase< OtherDerived > &other)
 replaces *this by *this * other. More...
 
template<typename DiagonalDerived >
EIGEN_DEVICE_FUNC const Product< Derived, DiagonalDerived, LazyProductoperator* (const DiagonalBase< DiagonalDerived > &diagonal) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC ScalarBinaryOpTraits< typenameinternal::traits< Derived >::Scalar, typenameinternal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
EIGEN_DEVICE_FUNC RealScalar squaredNorm () const
 
EIGEN_DEVICE_FUNC RealScalar norm () const
 
RealScalar stableNorm () const
 
RealScalar blueNorm () const
 
RealScalar hypotNorm () const
 
EIGEN_DEVICE_FUNC const PlainObject normalized () const
 
EIGEN_DEVICE_FUNC const PlainObject stableNormalized () const
 
EIGEN_DEVICE_FUNC void normalize ()
 Normalizes the vector, i.e. More...
 
EIGEN_DEVICE_FUNC void stableNormalize ()
 Normalizes the vector while avoid underflow and overflow. More...
 
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC void adjointInPlace ()
 This is the "in place" version of adjoint(): it replaces *this by its own transpose. More...
 
EIGEN_DEVICE_FUNC DiagonalReturnType diagonal ()
 
EIGEN_DEVICE_FUNC ConstDiagonalReturnType diagonal () const
 This is the const version of diagonal(). More...
 
template<int Index>
EIGEN_DEVICE_FUNC DiagonalIndexReturnType< Index >::Type diagonal ()
 
template<int Index>
EIGEN_DEVICE_FUNC ConstDiagonalIndexReturnType< Index >::Type diagonal () const
 
EIGEN_DEVICE_FUNC DiagonalDynamicIndexReturnType diagonal (Index index)
 
EIGEN_DEVICE_FUNC ConstDiagonalDynamicIndexReturnType diagonal (Index index) const
 This is the const version of diagonal(Index). More...
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
const SparseView< Derived > sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > asDiagonal () const
 
const PermutationWrapper< const Derived > asPermutation () const
 
EIGEN_DEVICE_FUNC Derived & setIdentity ()
 Writes the identity expression (not necessarily square) into *this. More...
 
EIGEN_DEVICE_FUNC Derived & setIdentity (Index rows, Index cols)
 Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index i)
 Set the coefficients of *this to the i-th unit (basis) vector. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index newSize, Index i)
 Resizes to the given newSize, and writes the i-th unit (basis) vector into *this. More...
 
bool isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator== (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator!= (const MatrixBase< OtherDerived > &other) const
 
NoAlias< Derived, Eigen::MatrixBase > EIGEN_DEVICE_FUNC noalias ()
 
const Derived & forceAlignedAccess () const
 
Derived & forceAlignedAccess ()
 
template<bool Enable>
const Derived & forceAlignedAccessIf () const
 
template<bool Enable>
Derived & forceAlignedAccessIf ()
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
template<int p>
EIGEN_DEVICE_FUNC RealScalar lpNorm () const
 
EIGEN_DEVICE_FUNC MatrixBase< Derived > & matrix ()
 
EIGEN_DEVICE_FUNC const MatrixBase< Derived > & matrix () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper< Derived > array ()
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper< const Derived > array () const
 
const FullPivLU< PlainObjectfullPivLu () const
 \lu_module More...
 
const PartialPivLU< PlainObjectpartialPivLu () const
 \lu_module More...
 
const PartialPivLU< PlainObjectlu () const
 \lu_module More...
 
EIGEN_DEVICE_FUNC const Inverse< Derived > inverse () const
 \lu_module More...
 
template<typename ResultType >
void computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 \lu_module More...
 
template<typename ResultType >
void computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 \lu_module More...
 
EIGEN_DEVICE_FUNC Scalar determinant () const
 \lu_module More...
 
const LLT< PlainObjectllt () const
 \cholesky_module More...
 
const LDLT< PlainObjectldlt () const
 \cholesky_module More...
 
const HouseholderQR< PlainObjecthouseholderQr () const
 
const ColPivHouseholderQR< PlainObjectcolPivHouseholderQr () const
 
const FullPivHouseholderQR< PlainObjectfullPivHouseholderQr () const
 
const CompleteOrthogonalDecomposition< PlainObjectcompleteOrthogonalDecomposition () const
 
EigenvaluesReturnType eigenvalues () const
 Computes the eigenvalues of a matrix. More...
 
RealScalar operatorNorm () const
 Computes the L2 operator norm. More...
 
JacobiSVD< PlainObjectjacobiSvd (unsigned int computationOptions=0) const
 \svd_module More...
 
BDCSVD< PlainObjectbdcSvd (unsigned int computationOptions=0) const
 \svd_module More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC cross_product_return_type< OtherDerived >::type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC PlainObject cross3 (const MatrixBase< OtherDerived > &other) const
 
EIGEN_DEVICE_FUNC PlainObject unitOrthogonal (void) const
 
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > eulerAngles (Index a0, Index a1, Index a2) const
 
EIGEN_DEVICE_FUNC HomogeneousReturnType homogeneous () const
 
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE (ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType
 
EIGEN_DEVICE_FUNC const HNormalizedReturnType hnormalized () const
 
EIGEN_DEVICE_FUNC void makeHouseholderInPlace (Scalar &tau, RealScalar &beta)
 Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \). More...
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const
 Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \). More...
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix. More...
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix. More...
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 \jacobi_module Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \). More...
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 Applies the rotation in the plane j to the columns p and q of *this, i.e., it computes B = B * J with \( B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \). More...
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type cwiseProduct (const SparseMatrixBase< OtherDerived > &other) const
 
const MatrixFunctionReturnValue< Derived > matrixFunction (StemFunction f) const
 Helper function for the unsupported MatrixFunctions module. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 This is the const version of MatrixBase::selfadjointView() More...
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits< typenameinternal::traits< Derived >::Scalar, typenameinternal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
template<int p>
EIGEN_DEVICE_FUNC NumTraits< typenameinternal::traits< Derived >::Scalar >::Real lpNorm () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type triangularView () const
 This is the const version of MatrixBase::triangularView() More...
 
template<bool Enable>
internal::add_const_on_value_type< typenameinternal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type forceAlignedAccessIf () const
 
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
- Public Member Functions inherited from Eigen::DenseBase< Derived >
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index nonZeros () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize () const
 
EIGEN_DEVICE_FUNC void resize (Index newSize)
 Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). More...
 
EIGEN_DEVICE_FUNC void resize (Index rows, Index cols)
 Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 Copies other into *this. More...
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase &other)
 Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1) More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 Copies the generic expression other into *this. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator+= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator-= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &func)
 
template<typename OtherDerived >
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const Scalar &s)
 Convenient operator to set the coefficients of a matrix. More...
 
template<unsigned int Added, unsigned int Removed>
EIGEN_DEPRECATED const Derived & flagged () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC TransposeReturnType transpose ()
 
EIGEN_DEVICE_FUNC ConstTransposeReturnType transpose () const
 This is the const version of transpose(). More...
 
EIGEN_DEVICE_FUNC void transposeInPlace ()
 This is the "in place" version of transpose(): it replaces *this by its own transpose. More...
 
EIGEN_DEVICE_FUNC void fill (const Scalar &value)
 Alias for setConstant(): sets all coefficients in this expression to val. More...
 
EIGEN_DEVICE_FUNC Derived & setConstant (const Scalar &value)
 Sets all coefficients in this expression to value val. More...
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setZero ()
 Sets all coefficients in this expression to zero. More...
 
EIGEN_DEVICE_FUNC Derived & setOnes ()
 Sets all coefficients in this expression to one. More...
 
EIGEN_DEVICE_FUNC Derived & setRandom ()
 Sets all coefficients in this expression to random values. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const RealScalar &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 This is just an alias for isApproxToConstant(). More...
 
EIGEN_DEVICE_FUNC bool isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool hasNaN () const
 
bool allFinite () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator*= (const Scalar &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator/= (const Scalar &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (const DenseBase< OtherDerived > &other)
 swaps *this with the expression other. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (PlainObjectBase< OtherDerived > &other)
 swaps *this with the matrix or array other. More...
 
EIGEN_DEVICE_FUNC const NestByValue< Derived > nestByValue () const
 
EIGEN_DEVICE_FUNC const ForceAlignedAccess< Derived > forceAlignedAccess () const
 
EIGEN_DEVICE_FUNC ForceAlignedAccess< Derived > forceAlignedAccess ()
 
template<bool Enable>
EIGEN_DEVICE_FUNC const internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf () const
 
template<bool Enable>
EIGEN_DEVICE_FUNC internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
EIGEN_DEVICE_FUNC Scalar sum () const
 
EIGEN_DEVICE_FUNC Scalar mean () const
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
EIGEN_DEVICE_FUNC Scalar prod () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename BinaryOp >
EIGEN_DEVICE_FUNC Scalar redux (const BinaryOp &func) const
 
template<typename Visitor >
EIGEN_DEVICE_FUNC void visit (Visitor &func) const
 Applies the visitor visitor to the whole coefficients of the matrix or vector. More...
 
const WithFormat< Derived > format (const IOFormat &fmt) const
 
EIGEN_DEVICE_FUNC CoeffReturnType value () const
 
EIGEN_DEVICE_FUNC bool all () const
 
EIGEN_DEVICE_FUNC bool any () const
 
EIGEN_DEVICE_FUNC Index count () const
 
EIGEN_DEVICE_FUNC ConstRowwiseReturnType rowwise () const
 
EIGEN_DEVICE_FUNC RowwiseReturnType rowwise ()
 
EIGEN_DEVICE_FUNC ConstColwiseReturnType colwise () const
 
EIGEN_DEVICE_FUNC ColwiseReturnType colwise ()
 
template<typename ThenDerived , typename ElseDerived >
EIGEN_DEVICE_FUNC const Select< Derived, ThenDerived, ElseDerived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
EIGEN_DEVICE_FUNC const Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > select (const DenseBase< ThenDerived > &thenMatrix, const typename ThenDerived::Scalar &elseScalar) const
 Version of DenseBase::select(const DenseBase&, const DenseBase&) with the else expression being a scalar value. More...
 
template<typename ElseDerived >
EIGEN_DEVICE_FUNC const Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > select (const typename ElseDerived::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 Version of DenseBase::select(const DenseBase&, const DenseBase&) with the then expression being a scalar value. More...
 
template<int p>
RealScalar lpNorm () const
 
template<int RowFactor, int ColFactor>
EIGEN_DEVICE_FUNC const Replicate< Derived, RowFactor, ColFactor > replicate () const
 
EIGEN_DEVICE_FUNC const Replicate< Derived, Dynamic, Dynamicreplicate (Index rowFactor, Index colFactor) const
 
EIGEN_DEVICE_FUNC ReverseReturnType reverse ()
 
EIGEN_DEVICE_FUNC ConstReverseReturnType reverse () const
 This is the const version of reverse(). More...
 
EIGEN_DEVICE_FUNC void reverseInPlace ()
 This is the "in place" version of reverse: it reverses *this. More...
 
iterator begin ()
 returns an iterator to the first element of the 1D vector or array \only_for_vectors More...
 
const_iterator begin () const
 const version of begin() More...
 
const_iterator cbegin () const
 returns a read-only const_iterator to the first element of the 1D vector or array \only_for_vectors More...
 
iterator end ()
 returns an iterator to the element following the last element of the 1D vector or array \only_for_vectors More...
 
const_iterator end () const
 const version of end() More...
 
const_iterator cend () const
 returns a read-only const_iterator to the element following the last element of the 1D vector or array \only_for_vectors More...
 
template<typename Dest >
EIGEN_DEVICE_FUNC void evalTo (Dest &) const
 
template<typename Derived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
template<typename Func >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar redux (const Func &func) const
 

Static Public Member Functions

static EIGEN_DEVICE_FUNC const IdentityReturnType Identity ()
 
static EIGEN_DEVICE_FUNC const IdentityReturnType Identity (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const BasisReturnType Unit (Index size, Index i)
 
static EIGEN_DEVICE_FUNC const BasisReturnType Unit (Index i)
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitX ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitY ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitZ ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitW ()
 
- Static Public Member Functions inherited from Eigen::DenseBase< Derived >
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (Index size, const Scalar &value)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (const Scalar &value)
 
EIGEN_DEPRECATED static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
 
EIGEN_DEPRECATED static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
 
static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Zero (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Zero (Index size)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Zero ()
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones (Index size)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones ()
 
static const RandomReturnType Random (Index rows, Index cols)
 
static const RandomReturnType Random (Index size)
 
static const RandomReturnType Random ()
 

Protected Member Functions

template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &)
 
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &)
 
- Protected Member Functions inherited from Eigen::DenseBase< Derived >
EIGEN_DEVICE_FUNC DenseBase ()
 Default constructor. More...
 

Additional Inherited Members

- Public Attributes inherited from Eigen::DenseBase< Derived >
EIGEN_DEPRECATED typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectSequentialLinSpacedReturnType
 

Detailed Description

template<typename Derived>
class Eigen::MatrixBase< Derived >

Base class for all dense matrices, vectors, and expressions.

This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.

Note that some methods are defined in other modules such as the LU module LU module for all functions related to matrix inversions.

Template Parameters
Derivedis the derived type, e.g. a matrix type, or an expression, etc.

When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.

template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50

This class can be extended with the help of the plugin mechanism described on the page TopicCustomizing_Plugins by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN.

See also
\blank TopicClassHierarchy

Member Typedef Documentation

◆ AdjointReturnType

◆ Base

template<typename Derived >
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base

◆ BasisReturnType

◆ CoeffReturnType

template<typename Derived >
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType

◆ ColXpr

template<typename Derived >
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr

◆ ConstantReturnType

template<typename Derived >
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> Eigen::MatrixBase< Derived >::ConstantReturnType

◆ ConstDiagonalDynamicIndexReturnType

template<typename Derived >
typedef internal::add_const<Diagonal<constDerived,DynamicIndex>>::type Eigen::MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType

◆ ConstDiagonalReturnType

template<typename Derived >
typedef internal::add_const<Diagonal<constDerived>>::type Eigen::MatrixBase< Derived >::ConstDiagonalReturnType

◆ ConstStartMinusOne

template<typename Derived >
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne

◆ ConstTransposeReturnType

template<typename Derived >
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType

◆ DiagonalDynamicIndexReturnType

template<typename Derived >
typedef Diagonal<Derived,DynamicIndex> Eigen::MatrixBase< Derived >::DiagonalDynamicIndexReturnType

◆ DiagonalReturnType

template<typename Derived >
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType

◆ EigenvaluesReturnType

template<typename Derived >
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType

◆ HomogeneousReturnType

template<typename Derived >
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> Eigen::MatrixBase< Derived >::HomogeneousReturnType

◆ IdentityReturnType

template<typename Derived >
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,PlainObject> Eigen::MatrixBase< Derived >::IdentityReturnType

◆ PacketScalar

template<typename Derived >
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar

◆ PlainObject

template<typename Derived >
typedef Base::PlainObject Eigen::MatrixBase< Derived >::PlainObject

◆ RealScalar

template<typename Derived >
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar

◆ RowXpr

template<typename Derived >
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr

◆ Scalar

template<typename Derived >
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar

◆ SquareMatrixType

type of the equivalent square matrix

◆ StemFunction

template<typename Derived >
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction

◆ StorageBaseType

template<typename Derived >
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType

◆ StorageIndex

template<typename Derived >
typedef internal::traits<Derived>::StorageIndex Eigen::MatrixBase< Derived >::StorageIndex

◆ StorageKind

template<typename Derived >
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind

Member Enumeration Documentation

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
HomogeneousReturnTypeDirection 

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
SizeMinusOne 

Member Function Documentation

◆ adjoint()

template<typename Derived >
EIGEN_DEVICE_FUNC const MatrixBase< Derived >::AdjointReturnType Eigen::MatrixBase< Derived >::adjoint
inline
Returns
an expression of the adjoint (i.e. conjugate transpose) of *this.

Example:

Output:

Warning
If you want to replace a matrix by its own adjoint, do NOT do this:
m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method:
m.adjointInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.adjoint().eval();
See also
adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op

◆ adjointInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::adjointInPlace
inline

This is the "in place" version of adjoint(): it replaces *this by its own transpose.

Thus, doing

m.adjointInPlace();

has the same effect on m as doing

m = m.adjoint().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().

Note
if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.
See also
transpose(), adjoint(), transposeInPlace()

◆ applyHouseholderOnTheLeft()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheRight()

◆ applyHouseholderOnTheRight()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->rows() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft()

◆ applyOnTheLeft() [1/2]

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by other * *this.

Example:

Output:

 

◆ applyOnTheLeft() [2/2]

template<typename Derived >
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyOnTheLeft ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
)
inline

\jacobi_module Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \).

See also
class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()

◆ applyOnTheRight()

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

It is equivalent to MatrixBase::operator*=().

Example:

Output:

 

◆ array() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper< Derived > Eigen::MatrixBase< Derived >::array ( )
inline
Returns
an Array expression of this matrix
See also
ArrayBase::matrix()

◆ array() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper< const Derived > Eigen::MatrixBase< Derived >::array ( ) const
inline
Returns
a const Array expression of this matrix
See also
ArrayBase::matrix()

◆ asDiagonal()

template<typename Derived >
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > Eigen::MatrixBase< Derived >::asDiagonal
inline
Returns
a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients

\only_for_vectors

Example:

Output:

See also
class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()

◆ asPermutation()

template<typename Derived >
const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation

◆ bdcSvd()

template<typename Derived >
BDCSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::bdcSvd ( unsigned int  computationOptions = 0) const
inline

\svd_module

Returns
the singular value decomposition of *this computed by Divide & Conquer algorithm
See also
class BDCSVD

◆ blueNorm()

template<typename Derived >
NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::blueNorm
inline
Returns
the l2 norm of *this using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.

For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.

See also
norm(), stableNorm(), hypotNorm()

◆ colPivHouseholderQr()

template<typename Derived >
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::colPivHouseholderQr
inline
Returns
the column-pivoting Householder QR decomposition of *this.
See also
class ColPivHouseholderQR

◆ completeOrthogonalDecomposition()

template<typename Derived >
const CompleteOrthogonalDecomposition< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::completeOrthogonalDecomposition
inline
Returns
the complete orthogonal decomposition of *this.
See also
class CompleteOrthogonalDecomposition

◆ computeInverseAndDetWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseAndDetWithCheck ( ResultType &  inverse,
typename ResultType::Scalar &  determinant,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse and determinant, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
determinantReference to the variable in which to store the determinant.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also
inverse(), computeInverseWithCheck()

◆ computeInverseWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseWithCheck ( ResultType &  inverse,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also
inverse(), computeInverseAndDetWithCheck()

◆ cross()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC cross_product_return_type< OtherDerived >::type Eigen::MatrixBase< Derived >::cross ( const MatrixBase< OtherDerived > &  other) const
inline

◆ cross3()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC PlainObject Eigen::MatrixBase< Derived >::cross3 ( const MatrixBase< OtherDerived > &  other) const
inline

◆ cwiseProduct()

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE const SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type Eigen::MatrixBase< Derived >::cwiseProduct ( const SparseMatrixBase< OtherDerived > &  other) const
inline

◆ determinant()

template<typename Derived >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::determinant
inline

\lu_module

Returns
the determinant of this matrix

◆ diagonal() [1/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template DiagonalIndexReturnType< Index_ >::Type Eigen::MatrixBase< Derived >::diagonal
inline
Returns
an expression of the main diagonal of the matrix *this

*this is not required to be square.

Example:

Output:

See also
class Diagonal
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also
MatrixBase::diagonal(), class Diagonal

◆ diagonal() [2/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC DiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( )

◆ diagonal() [3/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index_ >::Type Eigen::MatrixBase< Derived >::diagonal
inline

This is the const version of diagonal().

This is the const version of diagonal<int>().

◆ diagonal() [4/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC ConstDiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( ) const

◆ diagonal() [5/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::DiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index)
inline
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also
MatrixBase::diagonal(), class Diagonal

◆ diagonal() [6/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index) const
inline

This is the const version of diagonal(Index).

◆ diagonalSize()

template<typename Derived >
EIGEN_DEVICE_FUNC Index Eigen::MatrixBase< Derived >::diagonalSize ( ) const
inline
Returns
the size of the main diagonal, which is min(rows(),cols()).
See also
rows(), cols(), SizeAtCompileTime.

◆ dot() [1/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits< typenameinternal::traits< Derived >::Scalar, typenameinternal::traits< OtherDerived >::Scalar >::ReturnType Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const

◆ dot() [2/2]

template<typename Derived >
template<typename OtherDerived >
Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
Returns
the dot product of *this with other.

\only_for_vectors

Note
If the scalar type is complex numbers, then this function returns the hermitian (sesquilinear) dot product, conjugate-linear in the first variable and linear in the second variable.
See also
squaredNorm(), norm()

◆ EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE()

template<typename Derived >
typedef Eigen::MatrixBase< Derived >::EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE ( ConstStartMinusOne  ,
Scalar  ,
quotient   
)

◆ eigenvalues()

template<typename Derived >
MatrixBase< Derived >::EigenvaluesReturnType Eigen::MatrixBase< Derived >::eigenvalues
inline

Computes the eigenvalues of a matrix.

Returns
Column vector containing the eigenvalues.

\eigenvalues_module This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.

The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also
EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), SelfAdjointView::eigenvalues()

◆ eulerAngles()

template<typename Derived >
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > Eigen::MatrixBase< Derived >::eulerAngles ( Index  a0,
Index  a1,
Index  a2 
) const
inline

◆ forceAlignedAccess() [1/2]

template<typename Derived >
ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(), class ForceAlignedAccess

◆ forceAlignedAccess() [2/2]

template<typename Derived >
const ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(),class ForceAlignedAccess

◆ forceAlignedAccessIf() [1/4]

template<typename Derived >
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

◆ forceAlignedAccessIf() [2/4]

template<typename Derived >
template<bool Enable>
Derived & Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline

◆ forceAlignedAccessIf() [3/4]

template<typename Derived >
template<bool Enable>
internal::add_const_on_value_type< typenameinternal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

◆ forceAlignedAccessIf() [4/4]

template<typename Derived >
template<bool Enable>
const Derived & Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline

◆ fullPivHouseholderQr()

template<typename Derived >
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivHouseholderQr
inline
Returns
the full-pivoting Householder QR decomposition of *this.
See also
class FullPivHouseholderQR

◆ fullPivLu()

template<typename Derived >
const FullPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivLu
inline

\lu_module

Returns
the full-pivoting LU decomposition of *this.
See also
class FullPivLU

◆ hnormalized()

template<typename Derived >
EIGEN_DEVICE_FUNC const HNormalizedReturnType Eigen::MatrixBase< Derived >::hnormalized ( ) const
inline

◆ homogeneous()

template<typename Derived >
EIGEN_DEVICE_FUNC HomogeneousReturnType Eigen::MatrixBase< Derived >::homogeneous ( ) const
inline

◆ householderQr()

template<typename Derived >
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::householderQr
inline
Returns
the Householder QR decomposition of *this.
See also
class HouseholderQR

◆ hypotNorm()

template<typename Derived >
NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::hypotNorm
inline
Returns
the l2 norm of *this avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
See also
norm(), stableNorm()

◆ Identity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity
static
Returns
an expression of the identity matrix (not necessarily square).

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.

Example:

Output:

See also
Identity(Index,Index), setIdentity(), isIdentity()

◆ Identity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( Index  rows,
Index  cols 
)
static
Returns
an expression of the identity matrix (not necessarily square).

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.

Example:

Output:

See also
Identity(), setIdentity(), isIdentity()

◆ inverse()

template<typename Derived >
EIGEN_DEVICE_FUNC const Inverse< Derived > Eigen::MatrixBase< Derived >::inverse
inline

\lu_module

Returns
the matrix inverse of this matrix.

For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.

Note
This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, do the following: Example:
Output:
See also
computeInverseAndDetWithCheck()

◆ isDiagonal()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isDiagonal ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a diagonal matrix, within the precision given by prec.

Example:

Output:

See also
asDiagonal()

◆ isIdentity()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isIdentity ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to the identity matrix (not necessarily square), within the precision given by prec.

Example:

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()

◆ isLowerTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isLowerTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a lower triangular matrix, within the precision given by prec.
See also
isUpperTriangular()

◆ isOrthogonal()

template<typename Derived >
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::isOrthogonal ( const MatrixBase< OtherDerived > &  other,
const RealScalar prec = NumTraits<Scalar>::dummy_precision() 
) const
Returns
true if *this is approximately orthogonal to other, within the precision given by prec.

Example:

Output:

 

◆ isUnitary()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUnitary ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately an unitary matrix, within the precision given by prec. In the case where the Scalar type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
Note
This can be used to check whether a family of vectors forms an orthonormal basis. Indeed, m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.

Example:

Output:

 

◆ isUpperTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUpperTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to an upper triangular matrix, within the precision given by prec.
See also
isLowerTriangular()

◆ jacobiSvd()

template<typename Derived >
JacobiSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions = 0) const
inline

\svd_module

Returns
the singular value decomposition of *this computed by two-sided Jacobi transformations.
See also
class JacobiSVD

◆ lazyProduct() [1/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived, LazyProduct > Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const
Returns
an expression of the matrix product of *this and other without implicit evaluation.

The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.

Warning
This version of the matrix product can be much much slower. So use it only if you know what you are doing and that you measured a true speed improvement.
See also
operator*(const MatrixBase&)

◆ lazyProduct() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived, LazyProduct > Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const

◆ ldlt()

template<typename Derived >
const LDLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::ldlt
inline

\cholesky_module

Returns
the Cholesky decomposition with full pivoting without square root of *this
See also
SelfAdjointView::ldlt()

◆ llt()

template<typename Derived >
const LLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::llt
inline

\cholesky_module

Returns
the LLT decomposition of *this
See also
SelfAdjointView::llt()

◆ lpNorm() [1/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::lpNorm ( ) const
inline
Returns
the coefficient-wise \( \ell^p \) norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this. If p is the special value Eigen::Infinity, this function returns the \( \ell^\infty \) norm, that is the maximum of the absolute values of the coefficients of *this.

In all cases, if *this is empty, then the value 0 is returned.

Note
For matrices, this function does not compute the operator-norm. That is, if *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \(\infty\)-norm matrix operator norms using partial reductions .
See also
norm()

◆ lpNorm() [2/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC RealScalar Eigen::MatrixBase< Derived >::lpNorm ( ) const

◆ lu()

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::lu
inline

\lu_module

Synonym of partialPivLu().

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU

◆ makeHouseholder()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholder ( EssentialPart &  essential,
Scalar tau,
RealScalar beta 
) const

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \).

On output:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

◆ makeHouseholderInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholderInPlace ( Scalar tau,
RealScalar beta 
)

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \).

The essential part of the vector v is stored in *this.

On output:

Parameters
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

◆ matrix() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived > & Eigen::MatrixBase< Derived >::matrix ( )
inline

◆ matrix() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const MatrixBase< Derived > & Eigen::MatrixBase< Derived >::matrix ( ) const
inline

◆ matrixFunction()

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::matrixFunction ( StemFunction  f) const

Helper function for the unsupported MatrixFunctions module.

◆ noalias()

template<typename Derived >
NoAlias< Derived, MatrixBase > EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::noalias
Returns
a pseudo expression of *this with an operator= assuming no aliasing between *this and the source expression.

More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.

Here are some examples where noalias is useful:

D.noalias() = A * B;
D.noalias() += A.transpose() * B;
D.noalias() -= 2 * A * B.adjoint();

On the other hand the following example will lead to a wrong result:

A.noalias() = A * B;

because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:

A = A * B;
See also
class NoAlias

◆ norm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm
Returns
, for vectors, the l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this with itself.
See also
lpNorm(), dot(), squaredNorm()

◆ normalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::normalize

Normalizes the vector, i.e.

divides it by its own norm.

\only_for_vectors

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
norm(), normalized()

◆ normalized()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized
Returns
an expression of the quotient of *this by its own norm.
Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.

\only_for_vectors

See also
norm(), normalize()

◆ operator!=()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator!= ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator==

◆ operator*() [1/3]

template<typename Derived >
template<typename DiagonalDerived >
EIGEN_DEVICE_FUNC const Product< Derived, DiagonalDerived, LazyProduct > Eigen::MatrixBase< Derived >::operator* ( const DiagonalBase< DiagonalDerived > &  a_diagonal) const
inline
Returns
the diagonal matrix product of *this by the diagonal matrix diagonal.

◆ operator*() [2/3]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived > Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const
Returns
the matrix product of *this and other.
Note
If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
See also
lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()

◆ operator*() [3/3]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived > Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const

◆ operator*=()

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator*= ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

Returns
a reference to *this

Example:

Output:

 

◆ operator+=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator+= ( const ArrayBase< OtherDerived > &  )
inlineprotected

◆ operator+=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator+= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this + other.

Returns
a reference to *this

◆ operator-=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator-= ( const ArrayBase< OtherDerived > &  )
inlineprotected

◆ operator-=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator-= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this - other.

Returns
a reference to *this

◆ operator=() [1/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const DenseBase< OtherDerived > &  other)

◆ operator=() [2/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

◆ operator=() [3/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

◆ operator=() [4/6]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const MatrixBase< Derived > &  other)

Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)

◆ operator=() [5/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

◆ operator=() [6/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

◆ operator==()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator== ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator!=

◆ operatorNorm()

template<typename Derived >
MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::operatorNorm
inline

Computes the L2 operator norm.

Returns
Operator norm of the matrix.

\eigenvalues_module This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix \( A \) is defined to be

\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]

where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix \( A^*A \).

The current implementation uses the eigenvalues of \( A^*A \), as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also
SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()

◆ partialPivLu()

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::partialPivLu
inline

\lu_module

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU

◆ selfadjointView() [1/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( )

◆ selfadjointView() [2/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( )
Returns
an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix

The parameter UpLo can be either Upper or Lower

Example:

Output:

See also
class SelfAdjointView

◆ selfadjointView() [3/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

◆ selfadjointView() [4/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

This is the const version of MatrixBase::selfadjointView()

◆ setIdentity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity

Writes the identity expression (not necessarily square) into *this.

Example:

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()

◆ setIdentity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( Index  rows,
Index  cols 
)

Resizes to the given size, and writes the identity expression (not necessarily square) into *this.

Parameters
rowsthe new number of rows
colsthe new number of columns

Example:

Output:

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()

◆ setUnit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  i)

Set the coefficients of *this to the i-th unit (basis) vector.

Parameters
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)

◆ setUnit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  newSize,
Index  i 
)

Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.

Parameters
newSizethe new size of the vector
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)

◆ squaredNorm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm
Returns
, for vectors, the squared l2 norm of *this, and for matrices the squared Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this with itself.
See also
dot(), norm(), lpNorm()

◆ stableNorm()

template<typename Derived >
NumTraits< typenameinternal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::stableNorm
inline
Returns
the l2 norm of *this avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s 2 - compute \( s \Vert \frac{*this}{s} \Vert \) in a standard way

For architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.

See also
norm(), blueNorm(), hypotNorm()

◆ stableNormalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::stableNormalize

Normalizes the vector while avoid underflow and overflow.

\only_for_vectors

This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
stableNorm(), stableNormalized(), normalize()

◆ stableNormalized()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::stableNormalized
Returns
an expression of the quotient of *this by its own norm while avoiding underflow and overflow.

\only_for_vectors

This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.
See also
stableNorm(), stableNormalize(), normalized()

◆ trace()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace
Returns
the trace of *this, i.e. the sum of the coefficients on the main diagonal.

*this can be any matrix, not necessarily square.

See also
diagonal(), sum()

◆ triangularView() [1/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( )

◆ triangularView() [2/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( )
Returns
an expression of a triangular view extracted from the current matrix

The parameter Mode can have the following values: Upper, StrictlyUpper, UnitUpper, Lower, StrictlyLower, UnitLower.

Example:

Output:

See also
class TriangularView

◆ triangularView() [3/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

◆ triangularView() [4/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

This is the const version of MatrixBase::triangularView()

◆ Unit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  i)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

This variant is for fixed-size vector only.

See also
MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

◆ Unit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  newSize,
Index  i 
)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

See also
MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

◆ unitOrthogonal()

template<typename Derived >
EIGEN_DEVICE_FUNC PlainObject Eigen::MatrixBase< Derived >::unitOrthogonal ( void  ) const
inline

◆ UnitW()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitW
static
Returns
an expression of the W axis unit vector (0,0,0,1)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

◆ UnitX()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitX
static
Returns
an expression of the X axis unit vector (1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

◆ UnitY()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitY
static
Returns
an expression of the Y axis unit vector (0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

◆ UnitZ()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitZ
static
Returns
an expression of the Z axis unit vector (0,0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

The documentation for this class was generated from the following files: