WPILibC++ 2023.4.3
Eigen Namespace Reference

Namespace containing all symbols from the Eigen library. More...

Namespaces

namespace  Architecture
 
namespace  bfloat16_impl
 
namespace  half_impl
 
namespace  indexing
 The sole purpose of this namespace is to be able to import all functions and symbols that are expected to be used within operator() for indexing and slicing.
 
namespace  internal
 
namespace  numext
 
namespace  placeholders
 
namespace  symbolic
 This namespace defines a set of classes and functions to build and evaluate symbolic expressions of scalar type Index.
 

Classes

class  aligned_allocator
 STL compatible allocator to use with types requiring a non standrad alignment. More...
 
class  aligned_allocator_indirection
 
class  AlignedBox
 
class  AMDOrdering
 Functor computing the approximate minimum degree ordering If the matrix is not structurally symmetric, an ordering of A^T+A is computed. More...
 
class  AngleAxis
 
class  ArithmeticSequence
 This class represents an arithmetic progression \( a_0, a_1, a_2, ..., a_{n-1}\) defined by its first value \( a_0 \), its size (aka length) n, and the increment (aka stride) that is equal to \( a_{i+1}-a_{i}\) for any i. More...
 
class  Array
 General-purpose arrays with easy API for coefficient-wise operations. More...
 
class  ArrayBase
 Base class for all 1D and 2D array, and related expressions. More...
 
class  ArrayWrapper
 Expression of a mathematical vector or matrix as an array object. More...
 
struct  ArrayXpr
 The type used to identify an array expression. More...
 
struct  BandShape
 
class  BDCSVD
 class Bidiagonal Divide and Conquer SVD More...
 
struct  bfloat16
 
class  BiCGSTAB
 A bi conjugate gradient stabilized solver for sparse square problems. More...
 
class  Block
 Expression of a fixed-size or dynamic-size block. More...
 
class  BlockImpl
 
class  BlockImpl< const SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse >
 Generic implementation of sparse Block expression. More...
 
class  BlockImpl< XprType, BlockRows, BlockCols, true, Sparse >
 
class  COLAMDOrdering
 
class  ColPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
 
class  CommaInitializer
 Helper class used by the comma initializer operator. More...
 
class  CompleteOrthogonalDecomposition
 Complete orthogonal decomposition (COD) of a matrix. More...
 
class  ComplexEigenSolver
 \eigenvalues_module More...
 
class  ComplexSchur
 \eigenvalues_module More...
 
class  Conjugate
 
class  ConjugateGradient
 A conjugate gradient solver for sparse (or dense) self-adjoint problems. More...
 
class  Cross
 
class  CwiseBinaryOp
 Generic expression where a coefficient-wise binary operator is applied to two expressions. More...
 
class  CwiseBinaryOpImpl
 
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
 
class  CwiseNullaryOp
 Generic expression of a matrix where all coefficients are defined by a functor. More...
 
class  CwiseTernaryOp
 Generic expression where a coefficient-wise ternary operator is applied to two expressions. More...
 
class  CwiseTernaryOpImpl
 
class  CwiseUnaryOp
 Generic expression where a coefficient-wise unary operator is applied to an expression. More...
 
class  CwiseUnaryOpImpl
 
class  CwiseUnaryView
 Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector. More...
 
class  CwiseUnaryViewImpl
 
class  CwiseUnaryViewImpl< ViewOp, MatrixType, Dense >
 
struct  Dense
 The type used to identify a dense storage. More...
 
class  DenseBase
 Base class for all dense matrices, vectors, and arrays. More...
 
class  DenseCoeffsBase
 
class  DenseCoeffsBase< Derived, DirectAccessors >
 Base class providing direct read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, DirectWriteAccessors >
 Base class providing direct read/write coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, ReadOnlyAccessors >
 Base class providing read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, WriteAccessors >
 Base class providing read/write coefficient access to matrices and arrays. More...
 
struct  DenseShape
 
struct  DenseSparseProductReturnType
 
class  DenseStorage
 
class  DenseStorage< T, 0, _Rows, _Cols, _Options >
 
class  DenseStorage< T, 0, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, 0, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, 0, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Size, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Size, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Size, Dynamic, Dynamic, _Options >
 
class  DenseTimeSparseProduct
 
class  Diagonal
 Expression of a diagonal/subdiagonal/superdiagonal in a matrix. More...
 
class  DiagonalBase
 
class  DiagonalMatrix
 Represents a diagonal matrix with its storage. More...
 
class  DiagonalPreconditioner
 A preconditioner based on the digonal entries. More...
 
class  DiagonalProduct
 
struct  DiagonalShape
 
class  DiagonalWrapper
 Expression of a diagonal matrix. More...
 
class  DynamicSparseMatrix
 
class  EigenBase
 Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). More...
 
class  EigenSolver
 \eigenvalues_module More...
 
class  Flagged
 
class  ForceAlignedAccess
 Enforce aligned packet loads and stores regardless of what is requested. More...
 
class  FullPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with full pivoting. More...
 
class  FullPivLU
 LU decomposition of a matrix with complete pivoting, and related features. More...
 
struct  general_product_to_triangular_selector
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false >
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true >
 
class  GeneralizedEigenSolver
 \eigenvalues_module More...
 
class  GeneralizedSelfAdjointEigenSolver
 \eigenvalues_module More...
 
struct  GenericNumTraits
 
struct  half
 
class  HessenbergDecomposition
 \eigenvalues_module More...
 
class  Homogeneous
 
struct  HomogeneousShape
 
class  HouseholderQR
 Householder QR decomposition of a matrix. More...
 
class  HouseholderSequence
 \householder_module More...
 
class  Hyperplane
 
class  IdentityPreconditioner
 A naive preconditioner which approximates any matrix as the identity matrix. More...
 
class  IncompleteCholesky
 Modified Incomplete Cholesky with dual threshold. More...
 
class  IncompleteLUT
 Incomplete LU factorization with dual-threshold strategy. More...
 
class  IndexedView
 Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices. More...
 
class  IndexedViewImpl
 
class  InnerIterator
 An InnerIterator allows to loop over the element of any matrix expression. More...
 
class  InnerStride
 Convenience specialization of Stride to specify only an inner stride See class Map for some examples. More...
 
class  Inverse
 Expression of the inverse of another expression. More...
 
class  InverseImpl
 
class  InverseImpl< PermutationType, PermutationStorage >
 
class  IOFormat
 Stores a set of parameters controlling the way matrices are printed. More...
 
class  IterativeSolverBase
 Base class for linear iterative solvers. More...
 
class  JacobiRotation
 \jacobi_module More...
 
class  JacobiSVD
 Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
 
struct  LazyProductReturnType
 
class  LDLT
 Robust Cholesky decomposition of a matrix with pivoting. More...
 
class  LeastSquareDiagonalPreconditioner
 Jacobi preconditioner for LeastSquaresConjugateGradient. More...
 
class  LeastSquaresConjugateGradient
 A conjugate gradient solver for sparse (or dense) least-square problems. More...
 
class  LLT
 Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...
 
class  Map
 A matrix or vector expression mapping an existing array of data. More...
 
class  Map< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, _PacketAccess >
 
class  Map< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 Specialization of class Map for SparseMatrix-like storage. More...
 
class  Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, PacketAccess >
 
class  MapBase
 
class  MapBase< Derived, ReadOnlyAccessors >
 Base class for dense Map and Block expression with direct access. More...
 
class  MapBase< Derived, WriteAccessors >
 Base class for non-const dense Map and Block expression with direct access. More...
 
class  MappedSparseMatrix
 Sparse matrix. More...
 
class  Matrix
 The matrix class, also used for vectors and row-vectors. More...
 
class  MatrixBase
 Base class for all dense matrices, vectors, and expressions. More...
 
class  MatrixComplexPowerReturnValue
 Proxy for the matrix power of some matrix (expression). More...
 
struct  MatrixExponentialReturnValue
 Proxy for the matrix exponential of some matrix (expression). More...
 
class  MatrixFunctionReturnValue
 Proxy for the matrix function of some matrix (expression). More...
 
class  MatrixLogarithmReturnValue
 Proxy for the matrix logarithm of some matrix (expression). More...
 
class  MatrixPower
 Class for computing matrix powers. More...
 
class  MatrixPowerAtomic
 Class for computing matrix powers. More...
 
class  MatrixPowerParenthesesReturnValue
 Proxy for the matrix power of some matrix. More...
 
class  MatrixPowerReturnValue
 Proxy for the matrix power of some matrix (expression). More...
 
class  MatrixSquareRootReturnValue
 Proxy for the matrix square root of some matrix (expression). More...
 
class  MatrixWrapper
 Expression of an array as a mathematical vector or matrix. More...
 
struct  MatrixXpr
 The type used to identify a matrix expression. More...
 
class  NaturalOrdering
 Functor computing the natural ordering (identity) More...
 
class  NestByValue
 Expression which must be nested by value. More...
 
class  NoAlias
 Pseudo expression providing an operator = assuming no aliasing. More...
 
class  NumTraits
 Holds information about the various numeric (i.e. More...
 
struct  NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
struct  NumTraits< bool >
 
struct  NumTraits< double >
 
struct  NumTraits< Eigen::bfloat16 >
 
struct  NumTraits< Eigen::half >
 
struct  NumTraits< float >
 
struct  NumTraits< long double >
 
struct  NumTraits< std::complex< _Real > >
 
struct  NumTraits< std::string >
 
struct  NumTraits< void >
 
class  OuterStride
 Convenience specialization of Stride to specify only an outer stride See class Map for some examples. More...
 
class  ParametrizedLine
 
struct  partial_redux_dummy_func
 
class  PartialPivLU
 LU decomposition of a matrix with partial pivoting, and related features. More...
 
class  PartialReduxExpr
 Generic expression of a partially reduxed matrix. More...
 
class  PermutationBase
 Base class for permutations. More...
 
class  PermutationMatrix
 Permutation matrix. More...
 
struct  PermutationShape
 
struct  PermutationStorage
 The type used to identify a permutation storage. More...
 
class  PermutationWrapper
 Class to view a vector of integers as a permutation matrix. More...
 
class  PlainObjectBase
 
class  Product
 Expression of the product of two arbitrary matrices or vectors. More...
 
class  ProductImpl
 
class  ProductImpl< Lhs, Rhs, Option, Dense >
 
struct  ProductReturnType
 
class  Quaternion
 
class  QuaternionBase
 
class  RealQZ
 \eigenvalues_module More...
 
class  RealSchur
 \eigenvalues_module More...
 
class  Ref
 A matrix or vector expression mapping an existing expression. More...
 
class  Ref< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const TPlainObjectType, Options, StrideType >
 
class  Ref< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse matrix expression referencing an existing sparse expression. More...
 
class  Ref< SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse vector expression referencing an existing sparse vector expression. More...
 
class  RefBase
 
class  Replicate
 Expression of the multiple replication of a matrix or vector. More...
 
class  Reshaped
 Expression of a fixed-size or dynamic-size reshape. More...
 
class  ReshapedImpl
 
class  ReshapedImpl< XprType, Rows, Cols, Order, Dense >
 
class  ReturnByValue
 
class  Reverse
 Expression of the reverse of a vector or matrix. More...
 
class  Rotation2D
 
class  RotationBase
 
class  ScalarBinaryOpTraits
 Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. More...
 
struct  ScalarBinaryOpTraits< T, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, void, BinaryOp >
 
struct  ScalarBinaryOpTraits< typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, void, BinaryOp >
 
class  Select
 Expression of a coefficient wise version of the C++ ternary operator ?: More...
 
struct  selfadjoint_product_selector
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
 
struct  selfadjoint_rank1_update
 
struct  selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
 
struct  selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
 
class  SelfAdjointEigenSolver
 \eigenvalues_module More...
 
struct  SelfAdjointShape
 
class  SelfAdjointView
 Expression of a selfadjoint matrix from a triangular part of a dense matrix. More...
 
class  SimplicialCholesky
 
class  SimplicialCholeskyBase
 A base class for direct sparse Cholesky factorizations. More...
 
class  SimplicialLDLT
 A direct sparse LDLT Cholesky factorizations without square root. More...
 
class  SimplicialLLT
 A direct sparse LLT Cholesky factorizations. More...
 
class  Solve
 Pseudo expression representing a solving operation. More...
 
class  SolveImpl
 
class  SolveImpl< Decomposition, RhsType, Dense >
 
class  SolverBase
 A base class for matrix decomposition and solvers. More...
 
struct  SolverShape
 
struct  SolverStorage
 The type used to identify a general solver (factored) storage. More...
 
class  SolveWithGuess
 Pseudo expression representing a solving operation. More...
 
struct  Sparse
 The type used to identify a general sparse storage. More...
 
class  SparseCompressedBase
 Common base class for sparse [compressed]-{row|column}-storage format. More...
 
class  SparseDenseOuterProduct
 
struct  SparseDenseProductReturnType
 
class  SparseDiagonalProduct
 
class  SparseLU
 Sparse supernodal LU factorization for general matrices. More...
 
struct  SparseLUMatrixLReturnType
 
struct  SparseLUMatrixUReturnType
 
class  SparseLUTransposeView
 
class  SparseMapBase
 
class  SparseMapBase< Derived, ReadOnlyAccessors >
 class SparseMapBase More...
 
class  SparseMapBase< Derived, WriteAccessors >
 class SparseMapBase More...
 
class  SparseMatrix
 A versatible sparse matrix representation. More...
 
class  SparseMatrixBase
 Base class of any sparse matrices or sparse expressions. More...
 
class  SparseQR
 Sparse left-looking QR factorization with numerical column pivoting. More...
 
struct  SparseQR_QProduct
 
struct  SparseQRMatrixQReturnType
 
struct  SparseQRMatrixQTransposeReturnType
 
class  SparseSelfAdjointView
 Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
 
struct  SparseShape
 
class  SparseSolverBase
 A base class for sparse solvers. More...
 
class  SparseSparseProduct
 
struct  SparseSparseProductReturnType
 
class  SparseSymmetricPermutationProduct
 
class  SparseTimeDenseProduct
 
class  SparseVector
 a sparse vector class More...
 
class  SparseView
 Expression of a dense or sparse matrix with zero or too small values removed. More...
 
class  Stride
 Holds strides information for Map. More...
 
class  SVDBase
 Base class of SVD algorithms. More...
 
class  SwapWrapper
 
class  Transform
 
class  Translation
 
class  Transpose
 Expression of the transpose of a matrix. More...
 
class  Transpose< TranspositionsBase< TranspositionsDerived > >
 
class  TransposeImpl
 
class  TransposeImpl< MatrixType, Dense >
 
class  TransposeImpl< MatrixType, Sparse >
 
class  Transpositions
 Represents a sequence of transpositions (row/column interchange) More...
 
class  TranspositionsBase
 
struct  TranspositionsShape
 
struct  TranspositionsStorage
 The type used to identify a permutation storage. More...
 
class  TranspositionsWrapper
 
class  TriangularBase
 Base class for triangular part in a matrix. More...
 
struct  TriangularShape
 
class  TriangularView
 Expression of a triangular part in a matrix. More...
 
class  TriangularViewImpl
 
class  TriangularViewImpl< _MatrixType, _Mode, Dense >
 Base class for a triangular part in a dense matrix. More...
 
class  TriangularViewImpl< MatrixType, Mode, Sparse >
 Base class for a triangular part in a sparse matrix. More...
 
class  Tridiagonalization
 \eigenvalues_module More...
 
class  Triplet
 A small structure to hold a non zero as a triplet (i,j,value). More...
 
class  UniformScaling
 
class  VectorBlock
 Expression of a fixed-size or dynamic-size sub-vector. More...
 
class  VectorwiseOp
 Pseudo expression providing broadcasting and partial reduction operations. More...
 
class  WithFormat
 Pseudo expression providing matrix output with given format. More...
 

Typedefs

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
 
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
 The Index type as used for the API. More...
 

Enumerations

enum  { StandardCompressedFormat = 2 }
 
enum  AutoSize_t { AutoSize }
 
enum  UpLoType {
  Lower =0x1 , Upper =0x2 , UnitDiag =0x4 , ZeroDiag =0x8 ,
  UnitLower =UnitDiag|Lower , UnitUpper =UnitDiag|Upper , StrictlyLower =ZeroDiag|Lower , StrictlyUpper =ZeroDiag|Upper ,
  SelfAdjoint =0x10 , Symmetric =0x20
}
 Enum containing possible values for the Mode or UpLo parameter of MatrixBase::selfadjointView() and MatrixBase::triangularView(), and selfadjoint solvers. More...
 
enum  AlignmentType {
  Unaligned =0 , Aligned8 =8 , Aligned16 =16 , Aligned32 =32 ,
  Aligned64 =64 , Aligned128 =128 , AlignedMask =255 , Aligned =16 ,
  AlignedMax = Unaligned
}
 Enum for indicating whether a buffer is aligned or not. More...
 
enum  DirectionType { Vertical , Horizontal , BothDirections }
 Enum containing possible values for the Direction parameter of Reverse, PartialReduxExpr and VectorwiseOp. More...
 
enum  TraversalType {
  DefaultTraversal , LinearTraversal , InnerVectorizedTraversal , LinearVectorizedTraversal ,
  SliceVectorizedTraversal , InvalidTraversal , AllAtOnceTraversal
}
 
enum  UnrollingType { NoUnrolling , InnerUnrolling , CompleteUnrolling }
 
enum  SpecializedType { Specialized , BuiltIn }
 
enum  StorageOptions { ColMajor = 0 , RowMajor = 0x1 , AutoAlign = 0 , DontAlign = 0x2 }
 Enum containing possible values for the _Options template parameter of Matrix, Array and BandMatrix. More...
 
enum  SideType { OnTheLeft = 1 , OnTheRight = 2 }
 Enum for specifying whether to apply or solve on the left or right. More...
 
enum  NaNPropagationOptions { PropagateFast = 0 , PropagateNaN , PropagateNumbers }
 Enum for specifying NaN-propagation behavior, e.g. More...
 
enum  NoChange_t { NoChange }
 
enum  Sequential_t { Sequential }
 
enum  Default_t { Default }
 
enum  AmbiVectorMode { IsDense = 0 , IsSparse }
 
enum  AccessorLevels { ReadOnlyAccessors , WriteAccessors , DirectAccessors , DirectWriteAccessors }
 Used as template parameter in DenseCoeffBase and MapBase to indicate which accessors should be provided. More...
 
enum  DecompositionOptions {
  Pivoting = 0x01 , NoPivoting = 0x02 , ComputeFullU = 0x04 , ComputeThinU = 0x08 ,
  ComputeFullV = 0x10 , ComputeThinV = 0x20 , EigenvaluesOnly = 0x40 , ComputeEigenvectors = 0x80 ,
  EigVecMask = EigenvaluesOnly | ComputeEigenvectors , Ax_lBx = 0x100 , ABx_lx = 0x200 , BAx_lx = 0x400 ,
  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
}
 Enum with options to give to various decompositions. More...
 
enum  QRPreconditioners { NoQRPreconditioner , HouseholderQRPreconditioner , ColPivHouseholderQRPreconditioner , FullPivHouseholderQRPreconditioner }
 Possible values for the QRPreconditioner template parameter of JacobiSVD. More...
 
enum  ComputationInfo { Success = 0 , NumericalIssue = 1 , NoConvergence = 2 , InvalidInput = 3 }
 Enum for reporting the status of a computation. More...
 
enum  TransformTraits { Isometry = 0x1 , Affine = 0x2 , AffineCompact = 0x10 | Affine , Projective = 0x20 }
 Enum used to specify how a particular transformation is stored in a matrix. More...
 
enum  ProductImplType {
  DefaultProduct =0 , LazyProduct , AliasFreeProduct , CoeffBasedProductMode ,
  LazyCoeffBasedProductMode , OuterProduct , InnerProduct , GemvProduct ,
  GemmProduct
}
 
enum  Action { GetAction , SetAction }
 
enum  { DontAlignCols = 1 }
 
enum  { StreamPrecision = -1 , FullPrecision = -2 }
 
enum  { Large = 2 , Small = 3 }
 
enum  SimplicialCholeskyMode { SimplicialCholeskyLLT , SimplicialCholeskyLDLT }
 

Functions

template<typename MatrixType , typename ResultType >
void matrix_sqrt_quasi_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of quasi-triangular matrix. More...
 
template<typename MatrixType , typename ResultType >
void matrix_sqrt_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of triangular matrix. More...
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator+ (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator+ (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator- (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator- (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename SparseDerived , typename PermDerived >
const Product< SparseDerived, PermDerived, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
 
template<typename SparseDerived , typename PermDerived >
const Product< PermDerived, SparseDerived, AliasFreeProductoperator* (const PermutationBase< PermDerived > &perm, const SparseMatrixBase< SparseDerived > &matrix)
 
template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const InverseImpl< PermutationType, PermutationStorage > &tperm)
 
template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProductoperator* (const InverseImpl< PermutationType, PermutationStorage > &tperm, const SparseMatrixBase< SparseDerived > &matrix)
 
template<typename MatrixDerived , typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
 
template<typename PermutationDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProductoperator* (const PermutationBase< PermutationDerived > &permutation, const MatrixBase< MatrixDerived > &matrix)
 
static const char * SimdInstructionSetsInUse (void)
 
static const symbolic::AddExpr< symbolic::SymbolExpr< internal::symbolic_last_tag >, symbolic::ValueExpr< Eigen::internal::FixedInt< 1 > > > lastp1 (last+fix< 1 >())
 
template<int N>
internal::FixedInt< N > fix ()
 
template<int N, typename T >
internal::VariableAndFixedInt< N > fix (T val)
 
void initParallel ()
 Must be call first when calling Eigen from multiple threads. More...
 
int nbThreads ()
 
void setNbThreads (int v)
 Sets the max number of threads reserved for Eigen. More...
 
std::ptrdiff_t l1CacheSize ()
 
std::ptrdiff_t l2CacheSize ()
 
std::ptrdiff_t l3CacheSize ()
 
void setCpuCacheSizes (std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
 Set the cpu L1 and L2 cache sizes (in bytes). More...
 
template<typename FirstType , typename SizeType , typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::typeseqN (FirstType first, SizeType size, IncrType incr)
 
template<typename FirstType , typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::typeseqN (FirstType first, SizeType size)
 
template<typename FirstType , typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type seq (FirstType f, LastType l)
 
template<typename FirstTypeDerived , typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l)
 
template<typename FirstType , typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstTypeDerived , typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > seq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstType , typename LastType , typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, LastType l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastType , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l, IncrType incr)
 
template<typename FirstType , typename LastTypeDerived , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastTypeDerived , typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::typeseq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename MatrixDerived , typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const TranspositionsBase< TranspositionsDerived > &transpositions)
 
template<typename TranspositionsDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProductoperator* (const TranspositionsBase< TranspositionsDerived > &transpositions, const MatrixBase< MatrixDerived > &matrix)
 
template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other, const HouseholderSequence< VectorsType, CoeffsType, Side > &h)
 Computes the product of a matrix with a Householder sequence. More...
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType > householderSequence (const VectorsType &v, const CoeffsType &h)
 \ More...
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType, OnTheRightrightHouseholderSequence (const VectorsType &v, const CoeffsType &h)
 \ More...
 

Variables

const int CoherentAccessPattern = 0x1
 
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern
 
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern
 
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern
 
const int AutoOrder = 2
 
static const symbolic::SymbolExpr< internal::symbolic_last_taglast
 Can be used as a parameter to Eigen::seq and Eigen::seqN functions to symbolically reference the last element/row/columns of the underlying vector or matrix once passed to DenseBase::operator()(const RowIndices&, const ColIndices&). More...
 
static const Eigen::internal::all_t all
 Can be used as a parameter to DenseBase::operator()(const RowIndices&, const ColIndices&) to index all rows or columns. More...
 
const int Dynamic = -1
 This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable. More...
 
const int DynamicIndex = 0xffffff
 This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime. More...
 
const int UndefinedIncr = 0xfffffe
 This value means that the increment to go from one value to another in a sequence is not constant for each step. More...
 
const int Infinity = -1
 This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>(). More...
 
const int HugeCost = 10000
 This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time. More...
 
const unsigned int RowMajorBit = 0x1
 for a matrix, this means that the storage order is row-major. More...
 
const unsigned int EvalBeforeNestingBit = 0x2
 means the expression should be evaluated by the calling expression More...
 
EIGEN_DEPRECATED const unsigned int EvalBeforeAssigningBit = 0x4
 
const unsigned int PacketAccessBit = 0x8
 Short version: means the expression might be vectorized. More...
 
const unsigned int ActualPacketAccessBit = 0x0
 
const unsigned int LinearAccessBit = 0x10
 Short version: means the expression can be seen as 1D vector. More...
 
const unsigned int LvalueBit = 0x20
 Means the expression has a coeffRef() method, i.e. More...
 
const unsigned int DirectAccessBit = 0x40
 Means that the underlying array of coefficients can be directly accessed as a plain strided array. More...
 
EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80
 
const unsigned int NestByRefBit = 0x100
 
const unsigned int NoPreferredStorageOrderBit = 0x200
 for an expression, this means that the storage order can be either row-major or column-major. More...
 
const unsigned int CompressedAccessBit = 0x400
 Means that the underlying coefficients can be accessed through pointers to the sparse (un)compressed storage format, that is, the expression provides: More...
 
const unsigned int HereditaryBits
 
EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & exponents
 

Detailed Description

Namespace containing all symbols from the Eigen library.

Typedef Documentation

◆ DenseIndex

◆ Index

The Index type as used for the API.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also
\blank TopicPreprocessorDirectives, StorageIndex.

Enumeration Type Documentation

◆ anonymous enum

anonymous enum
Enumerator
DontAlignCols 

◆ anonymous enum

anonymous enum
Enumerator
StreamPrecision 
FullPrecision 

◆ anonymous enum

anonymous enum
Enumerator
Large 
Small 

◆ anonymous enum

anonymous enum
Enumerator
StandardCompressedFormat 

used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form

◆ Action

Enumerator
GetAction 
SetAction 

◆ AmbiVectorMode

Enumerator
IsDense 
IsSparse 

◆ AutoSize_t

Enumerator
AutoSize 

◆ Default_t

Enumerator
Default 

◆ NoChange_t

Enumerator
NoChange 

◆ ProductImplType

Enumerator
DefaultProduct 
LazyProduct 
AliasFreeProduct 
CoeffBasedProductMode 
LazyCoeffBasedProductMode 
OuterProduct 
InnerProduct 
GemvProduct 
GemmProduct 

◆ Sequential_t

Enumerator
Sequential 

◆ SimplicialCholeskyMode

Enumerator
SimplicialCholeskyLLT 
SimplicialCholeskyLDLT 

◆ SpecializedType

Enumerator
Specialized 
BuiltIn 

◆ TraversalType

Enumerator
DefaultTraversal 
LinearTraversal 
InnerVectorizedTraversal 
LinearVectorizedTraversal 
SliceVectorizedTraversal 
InvalidTraversal 
AllAtOnceTraversal 

◆ UnrollingType

Enumerator
NoUnrolling 
InnerUnrolling 
CompleteUnrolling 

Function Documentation

◆ fix() [1/2]

template<int N>
internal::FixedInt< N > Eigen::fix ( )
inline

◆ fix() [2/2]

template<int N, typename T >
internal::VariableAndFixedInt< N > Eigen::fix ( val)
inline

◆ initParallel()

void Eigen::initParallel ( )
inline

Must be call first when calling Eigen from multiple threads.

◆ l1CacheSize()

std::ptrdiff_t Eigen::l1CacheSize ( )
inline
Returns
the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l2CacheSize()

std::ptrdiff_t Eigen::l2CacheSize ( )
inline
Returns
the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l3CacheSize()

std::ptrdiff_t Eigen::l3CacheSize ( )
inline
Returns
the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\ rs.
See also
setCpuCacheSize

◆ lastp1()

◆ nbThreads()

int Eigen::nbThreads ( )
inline
Returns
the max number of threads reserved for Eigen
See also
setNbThreads

◆ operator*() [1/9]

template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > Eigen::operator* ( const InverseImpl< PermutationType, PermutationStorage > &  tperm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the inverse permutation applied to the rows.

◆ operator*() [2/9]

template<typename MatrixDerived , typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const PermutationBase< PermutationDerived > &  permutation 
)
Returns
the matrix with the permutation applied to the columns.

◆ operator*() [3/9]

template<typename MatrixDerived , typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const TranspositionsBase< TranspositionsDerived > &  transpositions 
)
Returns
the matrix with the transpositions applied to the columns.

◆ operator*() [4/9]

template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type Eigen::operator* ( const MatrixBase< OtherDerived > &  other,
const HouseholderSequence< VectorsType, CoeffsType, Side > &  h 
)

Computes the product of a matrix with a Householder sequence.

Parameters
[in]otherMatrix being multiplied.
[in]hHouseholderSequence being multiplied.
Returns
Expression object representing the product.

This function computes \( MH \) where \( M \) is the matrix other and \( H \) is the Householder sequence represented by h.

◆ operator*() [5/9]

template<typename SparseDerived , typename PermDerived >
const Product< PermDerived, SparseDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermDerived > &  perm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the permutation applied to the rows

◆ operator*() [6/9]

template<typename PermutationDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermutationDerived > &  permutation,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the permutation applied to the rows.

◆ operator*() [7/9]

template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const InverseImpl< PermutationType, PermutationStorage > &  tperm 
)
inline
Returns
the matrix with the inverse permutation applied to the columns.

◆ operator*() [8/9]

template<typename SparseDerived , typename PermDerived >
const Product< SparseDerived, PermDerived, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const PermutationBase< PermDerived > &  perm 
)
inline
Returns
the matrix with the permutation applied to the columns

◆ operator*() [9/9]

template<typename TranspositionsDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const TranspositionsBase< TranspositionsDerived > &  transpositions,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the transpositions applied to the rows.

◆ operator+() [1/2]

template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > Eigen::operator+ ( const MatrixBase< DenseDerived > &  a,
const SparseMatrixBase< SparseDerived > &  b 
)

◆ operator+() [2/2]

template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > Eigen::operator+ ( const SparseMatrixBase< SparseDerived > &  a,
const MatrixBase< DenseDerived > &  b 
)

◆ operator-() [1/2]

template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > Eigen::operator- ( const MatrixBase< DenseDerived > &  a,
const SparseMatrixBase< SparseDerived > &  b 
)

◆ operator-() [2/2]

template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > Eigen::operator- ( const SparseMatrixBase< SparseDerived > &  a,
const MatrixBase< DenseDerived > &  b 
)

◆ seq() [1/8]

template<typename FirstTypeDerived , typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
const symbolic::BaseExpr< LastTypeDerived > &  l 
)

◆ seq() [2/8]

template<typename FirstTypeDerived , typename LastTypeDerived , typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
const symbolic::BaseExpr< LastTypeDerived > &  l,
IncrType  incr 
)

◆ seq() [3/8]

template<typename FirstTypeDerived , typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
LastType  l 
)

◆ seq() [4/8]

template<typename FirstTypeDerived , typename LastType , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
LastType  l,
IncrType  incr 
)

◆ seq() [5/8]

template<typename FirstType , typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type Eigen::seq ( FirstType  f,
const symbolic::BaseExpr< LastTypeDerived > &  l 
)

◆ seq() [6/8]

template<typename FirstType , typename LastTypeDerived , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( FirstType  f,
const symbolic::BaseExpr< LastTypeDerived > &  l,
IncrType  incr 
)

◆ seq() [7/8]

template<typename FirstType , typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type Eigen::seq ( FirstType  f,
LastType  l 
)

◆ seq() [8/8]

template<typename FirstType , typename LastType , typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( FirstType  f,
LastType  l,
IncrType  incr 
)

◆ seqN() [1/2]

template<typename FirstType , typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > Eigen::seqN ( FirstType  first,
SizeType  size 
)
Returns
an ArithmeticSequence starting at first, of length size, and unit increment
See also
seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType)

◆ seqN() [2/2]

template<typename FirstType , typename SizeType , typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > Eigen::seqN ( FirstType  first,
SizeType  size,
IncrType  incr 
)
Returns
an ArithmeticSequence starting at first, of length size, and increment incr
See also
seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType)

◆ setCpuCacheSizes()

void Eigen::setCpuCacheSizes ( std::ptrdiff_t  l1,
std::ptrdiff_t  l2,
std::ptrdiff_t  l3 
)
inline

Set the cpu L1 and L2 cache sizes (in bytes).

These values are use to adjust the size of the blocks for the algorithms working per blocks.

See also
computeProductBlockingSizes

◆ setNbThreads()

void Eigen::setNbThreads ( int  v)
inline

Sets the max number of threads reserved for Eigen.

See also
nbThreads

◆ SimdInstructionSetsInUse()

static const char * Eigen::SimdInstructionSetsInUse ( void  )
inlinestatic

Variable Documentation

◆ ActualPacketAccessBit

const unsigned int Eigen::ActualPacketAccessBit = 0x0

◆ AutoOrder

const int Eigen::AutoOrder = 2

◆ CoherentAccessPattern

const int Eigen::CoherentAccessPattern = 0x1

◆ Dynamic

const int Eigen::Dynamic = -1

This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.

Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.

◆ DynamicIndex

const int Eigen::DynamicIndex = 0xffffff

This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.

◆ exponents

EIGEN_DEVICE_FUNC const Eigen::ArrayBase<Derived>& Eigen::exponents
Initial value:
{
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar
#define EIGEN_SCALAR_BINARY_SUPPORTED(OPNAME, TYPEA, TYPEB)
Definition: Macros.h:1354
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_pow_op< typename Derived::Scalar, typename ExponentDerived::Scalar >, const Derived, const ExponentDerived > pow(const Eigen::ArrayBase< Derived > &x, const Eigen::ArrayBase< ExponentDerived > &exponents)
Definition: GlobalFunctions.h:143
type
Definition: core.h:575

◆ HereditaryBits

const unsigned int Eigen::HereditaryBits
Initial value:
const unsigned int EvalBeforeNestingBit
means the expression should be evaluated by the calling expression
Definition: Constants.h:70
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:66

◆ HugeCost

const int Eigen::HugeCost = 10000

This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.

This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow.

◆ Infinity

const int Eigen::Infinity = -1

This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().

The value Infinity there means the L-infinity norm.

◆ InnerRandomAccessPattern

const int Eigen::InnerRandomAccessPattern = 0x2 | CoherentAccessPattern

◆ NestByRefBit

const unsigned int Eigen::NestByRefBit = 0x100

◆ OuterRandomAccessPattern

const int Eigen::OuterRandomAccessPattern = 0x4 | CoherentAccessPattern

◆ RandomAccessPattern

const int Eigen::RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern

◆ UndefinedIncr

const int Eigen::UndefinedIncr = 0xfffffe

This value means that the increment to go from one value to another in a sequence is not constant for each step.