WPILibC++ 2023.4.3
Eigen::JacobiSVD< _MatrixType, QRPreconditioner > Class Template Reference

Two-sided Jacobi SVD decomposition of a rectangular matrix. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/SVD/JacobiSVD.h>

Inheritance diagram for Eigen::JacobiSVD< _MatrixType, QRPreconditioner >:
Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > > Eigen::EigenBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime , ColsAtCompileTime = MatrixType::ColsAtCompileTime , DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime) , MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime , MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime) , MatrixOptions = MatrixType::Options
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef NumTraits< typenameMatrixType::Scalar >::Real RealScalar
 
typedef Base::MatrixUType MatrixUType
 
typedef Base::MatrixVType MatrixVType
 
typedef Base::SingularValuesType SingularValuesType
 
typedef internal::plain_row_type< MatrixType >::type RowType
 
typedef internal::plain_col_type< MatrixType >::type ColType
 
typedef Matrix< Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTimeWorkMatrixType
 
- Public Types inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >
enum  
 
typedef internal::traits< JacobiSVD< _MatrixType, QRPreconditioner > >::MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef NumTraits< typenameMatrixType::Scalar >::Real RealScalar
 
typedef Eigen::internal::traits< SVDBase >::StorageIndex StorageIndex
 
typedef Eigen::Index Index
 
typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTimeMatrixUType
 
typedef Matrix< Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTimeMatrixVType
 
typedef internal::plain_diag_type< MatrixType, RealScalar >::type SingularValuesType
 
- Public Types inherited from Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >
enum  
 
typedef EigenBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > > Base
 
typedef internal::traits< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >::Scalar Scalar
 
typedef Scalar CoeffReturnType
 
typedef internal::add_const< Transpose< constDerived > >::type ConstTransposeReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
- Public Types inherited from Eigen::EigenBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >
typedef Eigen::Index Index
 The interface type of indices. More...
 
typedef internal::traits< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >::StorageKind StorageKind
 

Public Member Functions

 JacobiSVD ()
 Default Constructor. More...
 
 JacobiSVD (Index rows, Index cols, unsigned int computationOptions=0)
 Default Constructor with memory preallocation. More...
 
 JacobiSVD (const MatrixType &matrix, unsigned int computationOptions=0)
 Constructor performing the decomposition of given matrix. More...
 
JacobiSVDcompute (const MatrixType &matrix, unsigned int computationOptions)
 Method performing the decomposition of given matrix using custom options. More...
 
JacobiSVDcompute (const MatrixType &matrix)
 Method performing the decomposition of given matrix using current options. More...
 
bool computeU () const
 
bool computeV () const
 
Index rows () const
 
Index cols () const
 
Index rank () const
 
- Public Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >
JacobiSVD< _MatrixType, QRPreconditioner > & derived ()
 
const JacobiSVD< _MatrixType, QRPreconditioner > & derived () const
 
const MatrixUTypematrixU () const
 
const MatrixVTypematrixV () const
 
const SingularValuesTypesingularValues () const
 
Index nonzeroSingularValues () const
 
Index rank () const
 
JacobiSVD< _MatrixType, QRPreconditioner > & setThreshold (const RealScalar &threshold)
 Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), which need to determine when singular values are to be considered nonzero. More...
 
JacobiSVD< _MatrixType, QRPreconditioner > & setThreshold (Default_t)
 Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. More...
 
RealScalar threshold () const
 Returns the threshold that will be used by certain methods such as rank(). More...
 
bool computeU () const
 
bool computeV () const
 
Index rows () const
 
Index cols () const
 
EIGEN_DEVICE_FUNC ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
void _solve_impl (const RhsType &rhs, DstType &dst) const
 
void _solve_impl_transposed (const RhsType &rhs, DstType &dst) const
 
- Public Member Functions inherited from Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >
 SolverBase ()
 Default constructor. More...
 
 ~SolverBase ()
 
const Solve< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
ConstTransposeReturnType transpose () const
 
AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & derived ()
 
EIGEN_DEVICE_FUNC const SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & derived () const
 
- Public Member Functions inherited from Eigen::EigenBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >
EIGEN_DEVICE_FUNC SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & derived ()
 
EIGEN_DEVICE_FUNC const SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & derived () const
 
EIGEN_DEVICE_FUNC SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & const_cast_derived () const
 
EIGEN_DEVICE_FUNC const SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > & const_derived () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC void evalTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void addTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void subTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheRight (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheLeft (Dest &dst) const
 

Protected Attributes

WorkMatrixType m_workMatrix
 
internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRowsm_qr_precond_morecols
 
internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanColsm_qr_precond_morerows
 
MatrixType m_scaledMatrix
 
MatrixUType m_matrixU
 
MatrixVType m_matrixV
 
SingularValuesType m_singularValues
 
ComputationInfo m_info
 
bool m_isInitialized
 
bool m_isAllocated
 
bool m_usePrescribedThreshold
 
bool m_computeFullU
 
bool m_computeThinU
 
bool m_computeFullV
 
bool m_computeThinV
 
unsigned int m_computationOptions
 
Index m_nonzeroSingularValues
 
Index m_rows
 
Index m_cols
 
Index m_diagSize
 
RealScalar m_prescribedThreshold
 
- Protected Attributes inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >
MatrixUType m_matrixU
 
MatrixVType m_matrixV
 
SingularValuesType m_singularValues
 
ComputationInfo m_info
 
bool m_isInitialized
 
bool m_isAllocated
 
bool m_usePrescribedThreshold
 
bool m_computeFullU
 
bool m_computeThinU
 
bool m_computeFullV
 
bool m_computeThinV
 
unsigned int m_computationOptions
 
Index m_nonzeroSingularValues
 
Index m_rows
 
Index m_cols
 
Index m_diagSize
 
RealScalar m_prescribedThreshold
 

Friends

template<typename __MatrixType , int _QRPreconditioner, bool _IsComplex>
struct internal::svd_precondition_2x2_block_to_be_real
 
template<typename __MatrixType , int _QRPreconditioner, int _Case, bool _DoAnything>
struct internal::qr_preconditioner_impl
 

Additional Inherited Members

- Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >
void _check_compute_assertions () const
 
void _check_solve_assertion (const Rhs &b) const
 
bool allocate (Index rows, Index cols, unsigned int computationOptions)
 
 SVDBase ()
 Default Constructor. More...
 
- Protected Member Functions inherited from Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > >
void _check_solve_assertion (const Rhs &b) const
 
- Static Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >
static void check_template_parameters ()
 

Detailed Description

template<typename _MatrixType, int QRPreconditioner>
class Eigen::JacobiSVD< _MatrixType, QRPreconditioner >

Two-sided Jacobi SVD decomposition of a rectangular matrix.

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the SVD decomposition
QRPreconditionerthis optional parameter allows to specify the type of QR decomposition that will be used internally for the R-SVD step for non-square matrices. See discussion of possible values below.

SVD decomposition consists in decomposing any n-by-p matrix A as a product

\[ A = U S V^* \]

where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.

Singular values are always sorted in decreasing order.

This JacobiSVD decomposition computes only the singular values by default. If you want U or V, you need to ask for them explicitly.

You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.

Here's an example demonstrating basic usage:

Output:

This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \( O(n^2p) \) where n is the smaller dimension and p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.

If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.

The possible values for QRPreconditioner are:

  • ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
  • FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. Contrary to other QRs, it doesn't allow computing thin unitaries.
  • HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal SVD iterations.
  • NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before applying it anyway.
See also
MatrixBase::jacobiSvd()

Member Typedef Documentation

◆ ColType

template<typename _MatrixType , int QRPreconditioner>
typedef internal::plain_col_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::ColType

◆ MatrixType

template<typename _MatrixType , int QRPreconditioner>
typedef _MatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixType

◆ MatrixUType

template<typename _MatrixType , int QRPreconditioner>
typedef Base::MatrixUType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixUType

◆ MatrixVType

template<typename _MatrixType , int QRPreconditioner>
typedef Base::MatrixVType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixVType

◆ RealScalar

template<typename _MatrixType , int QRPreconditioner>
typedef NumTraits<typenameMatrixType::Scalar>::Real Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RealScalar

◆ RowType

template<typename _MatrixType , int QRPreconditioner>
typedef internal::plain_row_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RowType

◆ Scalar

template<typename _MatrixType , int QRPreconditioner>
typedef MatrixType::Scalar Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::Scalar

◆ SingularValuesType

template<typename _MatrixType , int QRPreconditioner>
typedef Base::SingularValuesType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::SingularValuesType

◆ WorkMatrixType

template<typename _MatrixType , int QRPreconditioner>
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::WorkMatrixType

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType , int QRPreconditioner>
anonymous enum
Enumerator
RowsAtCompileTime 
ColsAtCompileTime 
DiagSizeAtCompileTime 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 
MaxDiagSizeAtCompileTime 
MatrixOptions 

Constructor & Destructor Documentation

◆ JacobiSVD() [1/3]

template<typename _MatrixType , int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via JacobiSVD::compute(const MatrixType&).

◆ JacobiSVD() [2/3]

template<typename _MatrixType , int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( Index  rows,
Index  cols,
unsigned int  computationOptions = 0 
)
inline

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
JacobiSVD()

◆ JacobiSVD() [3/3]

template<typename _MatrixType , int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( const MatrixType matrix,
unsigned int  computationOptions = 0 
)
inlineexplicit

Constructor performing the decomposition of given matrix.

Parameters
matrixthe matrix to decompose
computationOptionsoptional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV.

Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.

Member Function Documentation

◆ cols()

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::cols ( void  ) const
inline

◆ compute() [1/2]

template<typename _MatrixType , int QRPreconditioner>
JacobiSVD & Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::compute ( const MatrixType matrix)
inline

Method performing the decomposition of given matrix using current options.

Parameters
matrixthe matrix to decompose

This method uses the current computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).

◆ compute() [2/2]

template<typename MatrixType , int QRPreconditioner>
JacobiSVD< MatrixType, QRPreconditioner > & Eigen::JacobiSVD< MatrixType, QRPreconditioner >::compute ( const MatrixType matrix,
unsigned int  computationOptions 
)

Method performing the decomposition of given matrix using custom options.

Parameters
matrixthe matrix to decompose
computationOptionsoptional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV.

Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.

◆ computeU()

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::computeU ( ) const
inline
Returns
true if U (full or thin) is asked for in this SVD decomposition

◆ computeV()

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::computeV ( ) const
inline
Returns
true if V (full or thin) is asked for in this SVD decomposition

◆ rank()

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::rank ( ) const
inline
Returns
the rank of the matrix of which *this is the SVD.
Note
This method has to determine which singular values should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ rows()

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::rows ( void  ) const
inline

Friends And Related Function Documentation

◆ internal::qr_preconditioner_impl

template<typename _MatrixType , int QRPreconditioner>
template<typename __MatrixType , int _QRPreconditioner, int _Case, bool _DoAnything>
friend struct internal::qr_preconditioner_impl
friend

◆ internal::svd_precondition_2x2_block_to_be_real

template<typename _MatrixType , int QRPreconditioner>
template<typename __MatrixType , int _QRPreconditioner, bool _IsComplex>
friend struct internal::svd_precondition_2x2_block_to_be_real
friend

Member Data Documentation

◆ m_cols

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::m_cols
protected

◆ m_computationOptions

template<typename _MatrixType , int QRPreconditioner>
unsigned int Eigen::SVDBase< Derived >::m_computationOptions
protected

◆ m_computeFullU

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_computeFullU
protected

◆ m_computeFullV

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_computeFullV
protected

◆ m_computeThinU

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_computeThinU
protected

◆ m_computeThinV

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_computeThinV
protected

◆ m_diagSize

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::m_diagSize
protected

◆ m_info

template<typename _MatrixType , int QRPreconditioner>
ComputationInfo Eigen::SVDBase< Derived >::m_info
protected

◆ m_isAllocated

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_isAllocated
protected

◆ m_isInitialized

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_isInitialized
protected

◆ m_matrixU

template<typename _MatrixType , int QRPreconditioner>
MatrixUType Eigen::SVDBase< Derived >::m_matrixU
protected

◆ m_matrixV

template<typename _MatrixType , int QRPreconditioner>
MatrixVType Eigen::SVDBase< Derived >::m_matrixV
protected

◆ m_nonzeroSingularValues

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::m_nonzeroSingularValues
protected

◆ m_prescribedThreshold

template<typename _MatrixType , int QRPreconditioner>
RealScalar Eigen::SVDBase< Derived >::m_prescribedThreshold
protected

◆ m_qr_precond_morecols

template<typename _MatrixType , int QRPreconditioner>
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_qr_precond_morecols
protected

◆ m_qr_precond_morerows

template<typename _MatrixType , int QRPreconditioner>
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_qr_precond_morerows
protected

◆ m_rows

template<typename _MatrixType , int QRPreconditioner>
Index Eigen::SVDBase< Derived >::m_rows
protected

◆ m_scaledMatrix

template<typename _MatrixType , int QRPreconditioner>
MatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_scaledMatrix
protected

◆ m_singularValues

template<typename _MatrixType , int QRPreconditioner>
SingularValuesType Eigen::SVDBase< Derived >::m_singularValues
protected

◆ m_usePrescribedThreshold

template<typename _MatrixType , int QRPreconditioner>
bool Eigen::SVDBase< Derived >::m_usePrescribedThreshold
protected

◆ m_workMatrix

template<typename _MatrixType , int QRPreconditioner>
WorkMatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_workMatrix
protected

The documentation for this class was generated from the following files: