|
| FullPivLU () |
| Default Constructor. More...
|
|
| FullPivLU (Index rows, Index cols) |
| Default Constructor with memory preallocation. More...
|
|
template<typename InputType > |
| FullPivLU (const EigenBase< InputType > &matrix) |
| Constructor. More...
|
|
template<typename InputType > |
| FullPivLU (EigenBase< InputType > &matrix) |
| Constructs a LU factorization from a given matrix. More...
|
|
template<typename InputType > |
FullPivLU & | compute (const EigenBase< InputType > &matrix) |
| Computes the LU decomposition of the given matrix. More...
|
|
const MatrixType & | matrixLU () const |
|
Index | nonzeroPivots () const |
|
RealScalar | maxPivot () const |
|
EIGEN_DEVICE_FUNC const PermutationPType & | permutationP () const |
|
const PermutationQType & | permutationQ () const |
|
const internal::kernel_retval< FullPivLU > | kernel () const |
|
const internal::image_retval< FullPivLU > | image (const MatrixType &originalMatrix) const |
|
RealScalar | rcond () const |
|
internal::traits< MatrixType >::Scalar | determinant () const |
|
FullPivLU & | setThreshold (const RealScalar &threshold) |
| Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. More...
|
|
FullPivLU & | setThreshold (Default_t) |
| Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. More...
|
|
RealScalar | threshold () const |
| Returns the threshold that will be used by certain methods such as rank(). More...
|
|
Index | rank () const |
|
Index | dimensionOfKernel () const |
|
bool | isInjective () const |
|
bool | isSurjective () const |
|
bool | isInvertible () const |
|
const Inverse< FullPivLU > | inverse () const |
|
MatrixType | reconstructedMatrix () const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
|
template<typename RhsType , typename DstType > |
void | _solve_impl (const RhsType &rhs, DstType &dst) const |
|
template<bool Conjugate, typename RhsType , typename DstType > |
void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
|
| SolverBase () |
| Default constructor. More...
|
|
| ~SolverBase () |
|
const Solve< FullPivLU< _MatrixType >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
|
ConstTransposeReturnType | transpose () const |
|
AdjointReturnType | adjoint () const |
|
EIGEN_DEVICE_FUNC FullPivLU< _MatrixType > & | derived () |
|
EIGEN_DEVICE_FUNC const FullPivLU< _MatrixType > & | derived () const |
|
EIGEN_DEVICE_FUNC FullPivLU< _MatrixType > & | derived () |
|
EIGEN_DEVICE_FUNC const FullPivLU< _MatrixType > & | derived () const |
|
EIGEN_DEVICE_FUNC FullPivLU< _MatrixType > & | const_cast_derived () const |
|
EIGEN_DEVICE_FUNC const FullPivLU< _MatrixType > & | const_derived () const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
|
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
|
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
|
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
|
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
|
template<typename _MatrixType>
class Eigen::FullPivLU< _MatrixType >
LU decomposition of a matrix with complete pivoting, and related features.
- Template Parameters
-
_MatrixType | the type of the matrix of which we are computing the LU decomposition |
This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is decomposed as \( A = P^{-1} L U Q^{-1} \) where L is unit-lower-triangular, U is upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any zeros are at the end.
This decomposition provides the generic approach to solving systems of linear equations, computing the rank, invertibility, inverse, kernel, and determinant.
This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, working with the SVD allows to select the smallest singular values of the matrix, something that the LU decomposition doesn't see.
The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(), permutationQ().
As an example, here is how the original matrix can be retrieved:
Output:
This class supports the inplace decomposition mechanism.
- See also
- MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
template<typename _MatrixType >
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero.
This is not used for the LU decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
- Parameters
-
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than \( \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \) where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)