WPILibC++ 2023.4.3
Eigen::ComplexSchur< _MatrixType > Class Template Reference

\eigenvalues_module More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/Eigenvalues/ComplexSchur.h>

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime , ColsAtCompileTime = MatrixType::ColsAtCompileTime , Options = MatrixType::Options , MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 Scalar type for matrices of type _MatrixType. More...
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef Eigen::Index Index
 
typedef std::complex< RealScalarComplexScalar
 Complex scalar type for _MatrixType. More...
 
typedef Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTimeComplexMatrixType
 Type for the matrices in the Schur decomposition. More...
 

Public Member Functions

 ComplexSchur (Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
 Default constructor. More...
 
template<typename InputType >
 ComplexSchur (const EigenBase< InputType > &matrix, bool computeU=true)
 Constructor; computes Schur decomposition of given matrix. More...
 
const ComplexMatrixTypematrixU () const
 Returns the unitary matrix in the Schur decomposition. More...
 
const ComplexMatrixTypematrixT () const
 Returns the triangular matrix in the Schur decomposition. More...
 
template<typename InputType >
ComplexSchurcompute (const EigenBase< InputType > &matrix, bool computeU=true)
 Computes Schur decomposition of given matrix. More...
 
template<typename HessMatrixType , typename OrthMatrixType >
ComplexSchurcomputeFromHessenberg (const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU=true)
 Compute Schur decomposition from a given Hessenberg matrix. More...
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
ComplexSchursetMaxIterations (Index maxIters)
 Sets the maximum number of iterations allowed. More...
 
Index getMaxIterations ()
 Returns the maximum number of iterations. More...
 
template<typename InputType >
ComplexSchur< MatrixType > & compute (const EigenBase< InputType > &matrix, bool computeU)
 
template<typename HessMatrixType , typename OrthMatrixType >
ComplexSchur< MatrixType > & computeFromHessenberg (const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
 

Static Public Attributes

static const int m_maxIterationsPerRow = 30
 Maximum number of iterations per row. More...
 

Protected Attributes

ComplexMatrixType m_matT
 
ComplexMatrixType m_matU
 
HessenbergDecomposition< MatrixTypem_hess
 
ComputationInfo m_info
 
bool m_isInitialized
 
bool m_matUisUptodate
 
Index m_maxIters
 

Friends

struct internal::complex_schur_reduce_to_hessenberg< MatrixType, NumTraits< Scalar >::IsComplex >
 

Detailed Description

template<typename _MatrixType>
class Eigen::ComplexSchur< _MatrixType >

\eigenvalues_module

Performs a complex Schur decomposition of a real or complex square matrix

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the Schur decomposition; this is expected to be an instantiation of the Matrix class template.

Given a real or complex square matrix A, this class computes the Schur decomposition: \( A = U T U^*\) where U is a unitary complex matrix, and T is a complex upper triangular matrix. The diagonal of the matrix T corresponds to the eigenvalues of the matrix A.

Call the function compute() to compute the Schur decomposition of a given matrix. Alternatively, you can use the ComplexSchur(const MatrixType&, bool) constructor which computes the Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixU() and matrixT() functions to retrieve the matrices U and V in the decomposition.

Note
This code is inspired from Jampack
See also
class RealSchur, class EigenSolver, class ComplexEigenSolver

Member Typedef Documentation

◆ ComplexMatrixType

template<typename _MatrixType >
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> Eigen::ComplexSchur< _MatrixType >::ComplexMatrixType

Type for the matrices in the Schur decomposition.

This is a square matrix with entries of type ComplexScalar. The size is the same as the size of _MatrixType.

◆ ComplexScalar

template<typename _MatrixType >
typedef std::complex<RealScalar> Eigen::ComplexSchur< _MatrixType >::ComplexScalar

Complex scalar type for _MatrixType.

This is std::complex<Scalar> if Scalar is real (e.g., float or double) and just Scalar if Scalar is complex.

◆ Index

template<typename _MatrixType >
typedef Eigen::Index Eigen::ComplexSchur< _MatrixType >::Index
Deprecated:
since Eigen 3.3

◆ MatrixType

template<typename _MatrixType >
typedef _MatrixType Eigen::ComplexSchur< _MatrixType >::MatrixType

◆ RealScalar

template<typename _MatrixType >
typedef NumTraits<Scalar>::Real Eigen::ComplexSchur< _MatrixType >::RealScalar

◆ Scalar

template<typename _MatrixType >
typedef MatrixType::Scalar Eigen::ComplexSchur< _MatrixType >::Scalar

Scalar type for matrices of type _MatrixType.

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType >
anonymous enum
Enumerator
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Constructor & Destructor Documentation

◆ ComplexSchur() [1/2]

template<typename _MatrixType >
Eigen::ComplexSchur< _MatrixType >::ComplexSchur ( Index  size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
inlineexplicit

Default constructor.

Parameters
[in]sizePositive integer, size of the matrix whose Schur decomposition will be computed.

The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size parameter is only used as a hint. It is not an error to give a wrong size, but it may impair performance.

See also
compute() for an example.

◆ ComplexSchur() [2/2]

template<typename _MatrixType >
template<typename InputType >
Eigen::ComplexSchur< _MatrixType >::ComplexSchur ( const EigenBase< InputType > &  matrix,
bool  computeU = true 
)
inlineexplicit

Constructor; computes Schur decomposition of given matrix.

Parameters
[in]matrixSquare matrix whose Schur decomposition is to be computed.
[in]computeUIf true, both T and U are computed; if false, only T is computed.

This constructor calls compute() to compute the Schur decomposition.

See also
matrixT() and matrixU() for examples.

Member Function Documentation

◆ compute() [1/2]

template<typename _MatrixType >
template<typename InputType >
ComplexSchur< MatrixType > & Eigen::ComplexSchur< _MatrixType >::compute ( const EigenBase< InputType > &  matrix,
bool  computeU 
)

◆ compute() [2/2]

template<typename _MatrixType >
template<typename InputType >
ComplexSchur & Eigen::ComplexSchur< _MatrixType >::compute ( const EigenBase< InputType > &  matrix,
bool  computeU = true 
)

Computes Schur decomposition of given matrix.

Parameters
[in]matrixSquare matrix whose Schur decomposition is to be computed.
[in]computeUIf true, both T and U are computed; if false, only T is computed.
Returns
Reference to *this

The Schur decomposition is computed by first reducing the matrix to Hessenberg form using the class HessenbergDecomposition. The Hessenberg matrix is then reduced to triangular form by performing QR iterations with a single shift. The cost of computing the Schur decomposition depends on the number of iterations; as a rough guide, it may be taken on the number of iterations; as a rough guide, it may be taken to be \(25n^3\) complex flops, or \(10n^3\) complex flops if computeU is false.

Example:

Output:

See also
compute(const MatrixType&, bool, Index)

◆ computeFromHessenberg() [1/2]

template<typename _MatrixType >
template<typename HessMatrixType , typename OrthMatrixType >
ComplexSchur< MatrixType > & Eigen::ComplexSchur< _MatrixType >::computeFromHessenberg ( const HessMatrixType &  matrixH,
const OrthMatrixType &  matrixQ,
bool  computeU 
)

◆ computeFromHessenberg() [2/2]

template<typename _MatrixType >
template<typename HessMatrixType , typename OrthMatrixType >
ComplexSchur & Eigen::ComplexSchur< _MatrixType >::computeFromHessenberg ( const HessMatrixType &  matrixH,
const OrthMatrixType &  matrixQ,
bool  computeU = true 
)

Compute Schur decomposition from a given Hessenberg matrix.

Parameters
[in]matrixHMatrix in Hessenberg form H
[in]matrixQorthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
computeUComputes the matriX U of the Schur vectors
Returns
Reference to *this

This routine assumes that the matrix is already reduced in Hessenberg form matrixH using either the class HessenbergDecomposition or another mean. It computes the upper quasi-triangular matrix T of the Schur decomposition of H When computeU is true, this routine computes the matrix U such that A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix

NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix is not available, the user should give an identity matrix (Q.setIdentity())

See also
compute(const MatrixType&, bool)

◆ getMaxIterations()

template<typename _MatrixType >
Index Eigen::ComplexSchur< _MatrixType >::getMaxIterations ( )
inline

Returns the maximum number of iterations.

◆ info()

template<typename _MatrixType >
ComputationInfo Eigen::ComplexSchur< _MatrixType >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was successful, NoConvergence otherwise.

◆ matrixT()

template<typename _MatrixType >
const ComplexMatrixType & Eigen::ComplexSchur< _MatrixType >::matrixT ( ) const
inline

Returns the triangular matrix in the Schur decomposition.

Returns
A const reference to the matrix T.

It is assumed that either the constructor ComplexSchur(const MatrixType& matrix, bool computeU) or the member function compute(const MatrixType& matrix, bool computeU) has been called before to compute the Schur decomposition of a matrix.

Note that this function returns a plain square matrix. If you want to reference only the upper triangular part, use:

schur.matrixT().triangularView<Upper>()
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211

Example:

Output:

 

◆ matrixU()

template<typename _MatrixType >
const ComplexMatrixType & Eigen::ComplexSchur< _MatrixType >::matrixU ( ) const
inline

Returns the unitary matrix in the Schur decomposition.

Returns
A const reference to the matrix U.

It is assumed that either the constructor ComplexSchur(const MatrixType& matrix, bool computeU) or the member function compute(const MatrixType& matrix, bool computeU) has been called before to compute the Schur decomposition of a matrix, and that computeU was set to true (the default value).

Example:

Output:

 

◆ setMaxIterations()

template<typename _MatrixType >
ComplexSchur & Eigen::ComplexSchur< _MatrixType >::setMaxIterations ( Index  maxIters)
inline

Sets the maximum number of iterations allowed.

If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size of the matrix.

Friends And Related Function Documentation

◆ internal::complex_schur_reduce_to_hessenberg< MatrixType, NumTraits< Scalar >::IsComplex >

template<typename _MatrixType >
friend struct internal::complex_schur_reduce_to_hessenberg< MatrixType, NumTraits< Scalar >::IsComplex >
friend

Member Data Documentation

◆ m_hess

template<typename _MatrixType >
HessenbergDecomposition<MatrixType> Eigen::ComplexSchur< _MatrixType >::m_hess
protected

◆ m_info

template<typename _MatrixType >
ComputationInfo Eigen::ComplexSchur< _MatrixType >::m_info
protected

◆ m_isInitialized

template<typename _MatrixType >
bool Eigen::ComplexSchur< _MatrixType >::m_isInitialized
protected

◆ m_matT

template<typename _MatrixType >
ComplexMatrixType Eigen::ComplexSchur< _MatrixType >::m_matT
protected

◆ m_matU

template<typename _MatrixType >
ComplexMatrixType Eigen::ComplexSchur< _MatrixType >::m_matU
protected

◆ m_matUisUptodate

template<typename _MatrixType >
bool Eigen::ComplexSchur< _MatrixType >::m_matUisUptodate
protected

◆ m_maxIterationsPerRow

template<typename _MatrixType >
const int Eigen::ComplexSchur< _MatrixType >::m_maxIterationsPerRow = 30
static

Maximum number of iterations per row.

If not otherwise specified, the maximum number of iterations is this number times the size of the matrix. It is currently set to 30.

◆ m_maxIters

template<typename _MatrixType >
Index Eigen::ComplexSchur< _MatrixType >::m_maxIters
protected

The documentation for this class was generated from the following file: