12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
20template<
typename MatrixType,
bool IsComplex>
struct complex_schur_reduce_to_hessenberg;
64 typedef typename MatrixType::Scalar
Scalar;
112 template<
typename InputType>
114 :
m_matT(matrix.rows(),matrix.cols()),
115 m_matU(matrix.rows(),matrix.cols()),
190 template<
typename InputType>
210 template<
typename HessMatrixType,
typename OrthMatrixType>
256 bool subdiagonalEntryIsNeglegible(
Index i);
258 void reduceToTriangularForm(
bool computeU);
265template<typename MatrixType>
266inline bool
ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
280template<
typename MatrixType>
284 if (iter == 10 || iter == 20)
292 Matrix<ComplexScalar,2,2> t =
m_matT.template block<2,2>(iu-1,iu-1);
303 RealScalar eival1_norm = numext::norm1(eival1);
304 RealScalar eival2_norm = numext::norm1(eival2);
307 if(eival1_norm > eival2_norm)
308 eival2 = det / eival1;
310 eival1 = det / eival2;
313 if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
314 return normt * eival1;
316 return normt * eival2;
320template<
typename MatrixType>
321template<
typename InputType>
327 if(matrix.
cols() == 1)
330 if(computeU)
m_matU = ComplexMatrixType::Identity(1,1);
342template<
typename MatrixType>
343template<
typename HessMatrixType,
typename OrthMatrixType>
349 reduceToTriangularForm(computeU);
355template<
typename MatrixType,
bool IsComplex>
367template<
typename MatrixType>
381 _this.
m_matU = Q.template cast<ComplexScalar>();
389template<
typename MatrixType>
390void ComplexSchur<MatrixType>::reduceToTriangularForm(
bool computeU)
410 if(!subdiagonalEntryIsNeglegible(iu-1))
break;
421 if(totalIter > maxIters)
break;
425 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
435 JacobiRotation<ComplexScalar> rot;
438 m_matT.topRows((
std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
439 if(computeU)
m_matU.applyOnTheRight(il, il+1, rot);
441 for(
Index i=il+1 ; i<iu ; i++)
446 m_matT.topRows((
std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
447 if(computeU)
m_matU.applyOnTheRight(i, i+1, rot);
451 if(totalIter <= maxIters)
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
#define eigen_assert(x)
Definition: Macros.h:1047
\eigenvalues_module
Definition: ComplexSchur.h:52
ComplexMatrixType m_matT
Definition: ComplexSchur.h:248
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition: ComplexSchur.h:162
Index m_maxIters
Definition: ComplexSchur.h:253
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexSchur.h:235
NumTraits< Scalar >::Real RealScalar
Definition: ComplexSchur.h:65
bool m_isInitialized
Definition: ComplexSchur.h:251
ComplexSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU=true)
Compute Schur decomposition from a given Hessenberg matrix.
ComplexMatrixType m_matU
Definition: ComplexSchur.h:248
Eigen::Index Index
Definition: ComplexSchur.h:66
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition: ComplexSchur.h:138
bool m_matUisUptodate
Definition: ComplexSchur.h:252
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexSchur.h:217
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType.
Definition: ComplexSchur.h:64
ComplexSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes Schur decomposition of given matrix.
Definition: ComplexSchur.h:113
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexSchur.h:228
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition: ComplexSchur.h:245
ComplexSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition: ComplexSchur.h:94
ComputationInfo m_info
Definition: ComplexSchur.h:250
std::complex< RealScalar > ComplexScalar
Complex scalar type for _MatrixType.
Definition: ComplexSchur.h:74
ComplexSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
@ MaxRowsAtCompileTime
Definition: ComplexSchur.h:59
@ RowsAtCompileTime
Definition: ComplexSchur.h:56
@ MaxColsAtCompileTime
Definition: ComplexSchur.h:60
@ ColsAtCompileTime
Definition: ComplexSchur.h:57
@ Options
Definition: ComplexSchur.h:58
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > ComplexMatrixType
Type for the matrices in the Schur decomposition.
Definition: ComplexSchur.h:81
HessenbergDecomposition< MatrixType > m_hess
Definition: ComplexSchur.h:249
_MatrixType MatrixType
Definition: ComplexSchur.h:54
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix.
Definition: HessenbergDecomposition.h:152
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition.
Definition: HessenbergDecomposition.h:234
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition.
Definition: HessenbergDecomposition.h:262
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,...
Definition: PlainObjectBase.h:175
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,...
Definition: PlainObjectBase.h:152
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:143
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:440
@ Success
Computation was successful.
Definition: Constants.h:442
@ NoConvergence
Iterative procedure did not converge.
Definition: Constants.h:446
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1940
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
static constexpr const velocity::meters_per_second_t c(299792458.0)
Speed of light in vacuum.
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: EigenBase.h:63
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: EigenBase.h:60
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
Definition: ComplexSchur.h:370
Definition: ComplexSchur.h:357
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
Definition: ComplexSchur.h:359