WPILibC++ 2023.4.3
Eigen::HouseholderQR< _MatrixType > Class Template Reference

Householder QR decomposition of a matrix. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/QR/HouseholderQR.h>

Inheritance diagram for Eigen::HouseholderQR< _MatrixType >:
Eigen::SolverBase< HouseholderQR< _MatrixType > > Eigen::EigenBase< HouseholderQR< _MatrixType > >

Public Types

enum  { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime , MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
 
typedef _MatrixType MatrixType
 
typedef SolverBase< HouseholderQRBase
 
typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime,(MatrixType::Flags &RowMajorBit) ? RowMajor :ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTimeMatrixQType
 
typedef internal::plain_diag_type< MatrixType >::type HCoeffsType
 
typedef internal::plain_row_type< MatrixType >::type RowVectorType
 
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename HCoeffsType::ConjugateReturnType >::typeHouseholderSequenceType
 
- Public Types inherited from Eigen::SolverBase< HouseholderQR< _MatrixType > >
enum  
 
typedef EigenBase< HouseholderQR< _MatrixType > > Base
 
typedef internal::traits< HouseholderQR< _MatrixType > >::Scalar Scalar
 
typedef Scalar CoeffReturnType
 
typedef internal::add_const< Transpose< constDerived > >::type ConstTransposeReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
- Public Types inherited from Eigen::EigenBase< HouseholderQR< _MatrixType > >
typedef Eigen::Index Index
 The interface type of indices. More...
 
typedef internal::traits< HouseholderQR< _MatrixType > >::StorageKind StorageKind
 

Public Member Functions

 HouseholderQR ()
 Default Constructor. More...
 
 HouseholderQR (Index rows, Index cols)
 Default Constructor with memory preallocation. More...
 
template<typename InputType >
 HouseholderQR (const EigenBase< InputType > &matrix)
 Constructs a QR factorization from a given matrix. More...
 
template<typename InputType >
 HouseholderQR (EigenBase< InputType > &matrix)
 Constructs a QR factorization from a given matrix. More...
 
HouseholderSequenceType householderQ () const
 This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. More...
 
const MatrixTypematrixQR () const
 
template<typename InputType >
HouseholderQRcompute (const EigenBase< InputType > &matrix)
 
MatrixType::RealScalar absDeterminant () const
 
MatrixType::RealScalar logAbsDeterminant () const
 
Index rows () const
 
Index cols () const
 
const HCoeffsTypehCoeffs () const
 
template<typename RhsType , typename DstType >
void _solve_impl (const RhsType &rhs, DstType &dst) const
 
template<bool Conjugate, typename RhsType , typename DstType >
void _solve_impl_transposed (const RhsType &rhs, DstType &dst) const
 
- Public Member Functions inherited from Eigen::SolverBase< HouseholderQR< _MatrixType > >
 SolverBase ()
 Default constructor. More...
 
 ~SolverBase ()
 
const Solve< HouseholderQR< _MatrixType >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
ConstTransposeReturnType transpose () const
 
AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC HouseholderQR< _MatrixType > & derived ()
 
EIGEN_DEVICE_FUNC const HouseholderQR< _MatrixType > & derived () const
 
- Public Member Functions inherited from Eigen::EigenBase< HouseholderQR< _MatrixType > >
EIGEN_DEVICE_FUNC HouseholderQR< _MatrixType > & derived ()
 
EIGEN_DEVICE_FUNC const HouseholderQR< _MatrixType > & derived () const
 
EIGEN_DEVICE_FUNC HouseholderQR< _MatrixType > & const_cast_derived () const
 
EIGEN_DEVICE_FUNC const HouseholderQR< _MatrixType > & const_derived () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC void evalTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void addTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void subTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheRight (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheLeft (Dest &dst) const
 

Protected Member Functions

void computeInPlace ()
 Performs the QR factorization of the given matrix matrix. More...
 
- Protected Member Functions inherited from Eigen::SolverBase< HouseholderQR< _MatrixType > >
void _check_solve_assertion (const Rhs &b) const
 

Static Protected Member Functions

static void check_template_parameters ()
 

Protected Attributes

MatrixType m_qr
 
HCoeffsType m_hCoeffs
 
RowVectorType m_temp
 
bool m_isInitialized
 

Friends

class SolverBase< HouseholderQR >
 

Detailed Description

template<typename _MatrixType>
class Eigen::HouseholderQR< _MatrixType >

Householder QR decomposition of a matrix.

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the QR decomposition

This class performs a QR decomposition of a matrix A into matrices Q and R such that

\[ \mathbf{A} = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, Q a unitary matrix and R an upper triangular matrix. The result is stored in a compact way compatible with LAPACK.

Note that no pivoting is performed. This is not a rank-revealing decomposition. If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.

This Householder QR decomposition is faster, but less numerically stable and less feature-full than FullPivHouseholderQR or ColPivHouseholderQR.

This class supports the inplace decomposition mechanism.

See also
MatrixBase::householderQr()

Member Typedef Documentation

◆ Base

template<typename _MatrixType >
typedef SolverBase<HouseholderQR> Eigen::HouseholderQR< _MatrixType >::Base

◆ HCoeffsType

template<typename _MatrixType >
typedef internal::plain_diag_type<MatrixType>::type Eigen::HouseholderQR< _MatrixType >::HCoeffsType

◆ HouseholderSequenceType

template<typename _MatrixType >
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> Eigen::HouseholderQR< _MatrixType >::HouseholderSequenceType

◆ MatrixQType

template<typename _MatrixType >
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> Eigen::HouseholderQR< _MatrixType >::MatrixQType

◆ MatrixType

template<typename _MatrixType >
typedef _MatrixType Eigen::HouseholderQR< _MatrixType >::MatrixType

◆ RowVectorType

template<typename _MatrixType >
typedef internal::plain_row_type<MatrixType>::type Eigen::HouseholderQR< _MatrixType >::RowVectorType

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType >
anonymous enum
Enumerator
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Constructor & Destructor Documentation

◆ HouseholderQR() [1/4]

template<typename _MatrixType >
Eigen::HouseholderQR< _MatrixType >::HouseholderQR ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via HouseholderQR::compute(const MatrixType&).

◆ HouseholderQR() [2/4]

template<typename _MatrixType >
Eigen::HouseholderQR< _MatrixType >::HouseholderQR ( Index  rows,
Index  cols 
)
inline

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
HouseholderQR()

◆ HouseholderQR() [3/4]

template<typename _MatrixType >
template<typename InputType >
Eigen::HouseholderQR< _MatrixType >::HouseholderQR ( const EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a QR factorization from a given matrix.

This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:

HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
qr.compute(matrix);
See also
compute()

◆ HouseholderQR() [4/4]

template<typename _MatrixType >
template<typename InputType >
Eigen::HouseholderQR< _MatrixType >::HouseholderQR ( EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a QR factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

See also
HouseholderQR(const EigenBase&)

Member Function Documentation

◆ _solve_impl()

template<typename _MatrixType >
template<typename RhsType , typename DstType >
void Eigen::HouseholderQR< _MatrixType >::_solve_impl ( const RhsType &  rhs,
DstType &  dst 
) const

◆ _solve_impl_transposed()

template<typename _MatrixType >
template<bool Conjugate, typename RhsType , typename DstType >
void Eigen::HouseholderQR< _MatrixType >::_solve_impl_transposed ( const RhsType &  rhs,
DstType &  dst 
) const

◆ absDeterminant()

template<typename MatrixType >
MatrixType::RealScalar Eigen::HouseholderQR< MatrixType >::absDeterminant
Returns
the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note
This is only for square matrices.
Warning
a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
See also
logAbsDeterminant(), MatrixBase::determinant()

◆ check_template_parameters()

template<typename _MatrixType >
static void Eigen::HouseholderQR< _MatrixType >::check_template_parameters ( )
inlinestaticprotected

◆ cols()

template<typename _MatrixType >
Index Eigen::HouseholderQR< _MatrixType >::cols ( void  ) const
inline

◆ compute()

template<typename _MatrixType >
template<typename InputType >
HouseholderQR & Eigen::HouseholderQR< _MatrixType >::compute ( const EigenBase< InputType > &  matrix)
inline

◆ computeInPlace()

template<typename MatrixType >
void Eigen::HouseholderQR< MatrixType >::computeInPlace
protected

Performs the QR factorization of the given matrix matrix.

The result of the factorization is stored into *this, and a reference to *this is returned.

See also
class HouseholderQR, HouseholderQR(const MatrixType&)

◆ hCoeffs()

template<typename _MatrixType >
const HCoeffsType & Eigen::HouseholderQR< _MatrixType >::hCoeffs ( ) const
inline
Returns
a const reference to the vector of Householder coefficients used to represent the factor Q.

For advanced uses only.

◆ householderQ()

template<typename _MatrixType >
HouseholderSequenceType Eigen::HouseholderQR< _MatrixType >::householderQ ( ) const
inline

This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.

The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:

Example:

Output:

 

◆ logAbsDeterminant()

template<typename MatrixType >
MatrixType::RealScalar Eigen::HouseholderQR< MatrixType >::logAbsDeterminant
Returns
the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note
This is only for square matrices.
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
See also
absDeterminant(), MatrixBase::determinant()

◆ matrixQR()

template<typename _MatrixType >
const MatrixType & Eigen::HouseholderQR< _MatrixType >::matrixQR ( ) const
inline
Returns
a reference to the matrix where the Householder QR decomposition is stored in a LAPACK-compatible way.

◆ rows()

template<typename _MatrixType >
Index Eigen::HouseholderQR< _MatrixType >::rows ( void  ) const
inline

Friends And Related Function Documentation

◆ SolverBase< HouseholderQR >

template<typename _MatrixType >
friend class SolverBase< HouseholderQR >
friend

Member Data Documentation

◆ m_hCoeffs

template<typename _MatrixType >
HCoeffsType Eigen::HouseholderQR< _MatrixType >::m_hCoeffs
protected

◆ m_isInitialized

template<typename _MatrixType >
bool Eigen::HouseholderQR< _MatrixType >::m_isInitialized
protected

◆ m_qr

template<typename _MatrixType >
MatrixType Eigen::HouseholderQR< _MatrixType >::m_qr
protected

◆ m_temp

template<typename _MatrixType >
RowVectorType Eigen::HouseholderQR< _MatrixType >::m_temp
protected

The documentation for this class was generated from the following files: