WPILibC++ 2023.4.3
PermutationMatrix.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_PERMUTATIONMATRIX_H
12#define EIGEN_PERMUTATIONMATRIX_H
13
14namespace Eigen {
15
16namespace internal {
17
19
20} // end namespace internal
21
22/** \class PermutationBase
23 * \ingroup Core_Module
24 *
25 * \brief Base class for permutations
26 *
27 * \tparam Derived the derived class
28 *
29 * This class is the base class for all expressions representing a permutation matrix,
30 * internally stored as a vector of integers.
31 * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
32 * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
33 * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
34 * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
35 * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
36 *
37 * Permutation matrices are square and invertible.
38 *
39 * Notice that in addition to the member functions and operators listed here, there also are non-member
40 * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
41 * on either side.
42 *
43 * \sa class PermutationMatrix, class PermutationWrapper
44 */
45template<typename Derived>
46class PermutationBase : public EigenBase<Derived>
47{
50 public:
51
52 #ifndef EIGEN_PARSED_BY_DOXYGEN
53 typedef typename Traits::IndicesType IndicesType;
54 enum {
55 Flags = Traits::Flags,
56 RowsAtCompileTime = Traits::RowsAtCompileTime,
57 ColsAtCompileTime = Traits::ColsAtCompileTime,
58 MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
59 MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
60 };
61 typedef typename Traits::StorageIndex StorageIndex;
67 using Base::derived;
69 typedef void Scalar;
70 #endif
71
72 /** Copies the other permutation into *this */
73 template<typename OtherDerived>
75 {
76 indices() = other.indices();
77 return derived();
78 }
79
80 /** Assignment from the Transpositions \a tr */
81 template<typename OtherDerived>
83 {
84 setIdentity(tr.size());
85 for(Index k=size()-1; k>=0; --k)
87 return derived();
88 }
89
90 /** \returns the number of rows */
91 inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); }
92
93 /** \returns the number of columns */
94 inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); }
95
96 /** \returns the size of a side of the respective square matrix, i.e., the number of indices */
97 inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); }
98
99 #ifndef EIGEN_PARSED_BY_DOXYGEN
100 template<typename DenseDerived>
102 {
103 other.setZero();
104 for (Index i=0; i<rows(); ++i)
105 other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
106 }
107 #endif
108
109 /** \returns a Matrix object initialized from this permutation matrix. Notice that it
110 * is inefficient to return this Matrix object by value. For efficiency, favor using
111 * the Matrix constructor taking EigenBase objects.
112 */
114 {
115 return derived();
116 }
117
118 /** const version of indices(). */
119 const IndicesType& indices() const { return derived().indices(); }
120 /** \returns a reference to the stored array representing the permutation. */
121 IndicesType& indices() { return derived().indices(); }
122
123 /** Resizes to given size.
124 */
125 inline void resize(Index newSize)
126 {
127 indices().resize(newSize);
128 }
129
130 /** Sets *this to be the identity permutation matrix */
132 {
134 for(StorageIndex i = 0; i < n; ++i)
135 indices().coeffRef(i) = i;
136 }
137
138 /** Sets *this to be the identity permutation matrix of given size.
139 */
140 void setIdentity(Index newSize)
141 {
142 resize(newSize);
143 setIdentity();
144 }
145
146 /** Multiplies *this by the transposition \f$(ij)\f$ on the left.
147 *
148 * \returns a reference to *this.
149 *
150 * \warning This is much slower than applyTranspositionOnTheRight(Index,Index):
151 * this has linear complexity and requires a lot of branching.
152 *
153 * \sa applyTranspositionOnTheRight(Index,Index)
154 */
156 {
157 eigen_assert(i>=0 && j>=0 && i<size() && j<size());
158 for(Index k = 0; k < size(); ++k)
159 {
160 if(indices().coeff(k) == i) indices().coeffRef(k) = StorageIndex(j);
161 else if(indices().coeff(k) == j) indices().coeffRef(k) = StorageIndex(i);
162 }
163 return derived();
164 }
165
166 /** Multiplies *this by the transposition \f$(ij)\f$ on the right.
167 *
168 * \returns a reference to *this.
169 *
170 * This is a fast operation, it only consists in swapping two indices.
171 *
172 * \sa applyTranspositionOnTheLeft(Index,Index)
173 */
175 {
176 eigen_assert(i>=0 && j>=0 && i<size() && j<size());
177 std::swap(indices().coeffRef(i), indices().coeffRef(j));
178 return derived();
179 }
180
181 /** \returns the inverse permutation matrix.
182 *
183 * \note \blank \note_try_to_help_rvo
184 */
186 { return InverseReturnType(derived()); }
187 /** \returns the tranpose permutation matrix.
188 *
189 * \note \blank \note_try_to_help_rvo
190 */
192 { return InverseReturnType(derived()); }
193
194 /**** multiplication helpers to hopefully get RVO ****/
195
196
197#ifndef EIGEN_PARSED_BY_DOXYGEN
198 protected:
199 template<typename OtherDerived>
201 {
202 for (Index i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
203 }
204 template<typename Lhs,typename Rhs>
205 void assignProduct(const Lhs& lhs, const Rhs& rhs)
206 {
207 eigen_assert(lhs.cols() == rhs.rows());
208 for (Index i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
209 }
210#endif
211
212 public:
213
214 /** \returns the product permutation matrix.
215 *
216 * \note \blank \note_try_to_help_rvo
217 */
218 template<typename Other>
221
222 /** \returns the product of a permutation with another inverse permutation.
223 *
224 * \note \blank \note_try_to_help_rvo
225 */
226 template<typename Other>
228 { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
229
230 /** \returns the product of an inverse permutation with another permutation.
231 *
232 * \note \blank \note_try_to_help_rvo
233 */
234 template<typename Other> friend
236 { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
237
238 /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation.
239 *
240 * This function is O(\c n) procedure allocating a buffer of \c n booleans.
241 */
243 {
244 Index res = 1;
245 Index n = size();
247 mask.fill(false);
248 Index r = 0;
249 while(r < n)
250 {
251 // search for the next seed
252 while(r<n && mask[r]) r++;
253 if(r>=n)
254 break;
255 // we got one, let's follow it until we are back to the seed
256 Index k0 = r++;
257 mask.coeffRef(k0) = true;
258 for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
259 {
260 mask.coeffRef(k) = true;
261 res = -res;
262 }
263 }
264 return res;
266
267 protected:
268
269};
270
271namespace internal {
272template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
273struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
274 : traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
275{
278 typedef _StorageIndex StorageIndex;
279 typedef void Scalar;
280};
281}
282
283/** \class PermutationMatrix
284 * \ingroup Core_Module
285 *
286 * \brief Permutation matrix
287 *
288 * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
289 * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
290 * \tparam _StorageIndex the integer type of the indices
291 *
292 * This class represents a permutation matrix, internally stored as a vector of integers.
293 *
294 * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
295 */
296template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
297class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
298{
301 public:
302
303 typedef const PermutationMatrix& Nested;
304
305 #ifndef EIGEN_PARSED_BY_DOXYGEN
306 typedef typename Traits::IndicesType IndicesType;
307 typedef typename Traits::StorageIndex StorageIndex;
308 #endif
309
311 {}
312
313 /** Constructs an uninitialized permutation matrix of given size.
314 */
316 {
318 }
319
320 /** Copy constructor. */
321 template<typename OtherDerived>
323 : m_indices(other.indices()) {}
324
325 /** Generic constructor from expression of the indices. The indices
326 * array has the meaning that the permutations sends each integer i to indices[i].
327 *
328 * \warning It is your responsibility to check that the indices array that you passes actually
329 * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
330 * array's size.
331 */
332 template<typename Other>
334 {}
335
336 /** Convert the Transpositions \a tr to a permutation matrix */
337 template<typename Other>
339 : m_indices(tr.size())
340 {
341 *this = tr;
342 }
343
344 /** Copies the other permutation into *this */
345 template<typename Other>
347 {
348 m_indices = other.indices();
349 return *this;
350 }
351
352 /** Assignment from the Transpositions \a tr */
353 template<typename Other>
355 {
356 return Base::operator=(tr.derived());
357 }
358
359 /** const version of indices(). */
360 const IndicesType& indices() const { return m_indices; }
361 /** \returns a reference to the stored array representing the permutation. */
363
364
365 /**** multiplication helpers to hopefully get RVO ****/
366
367#ifndef EIGEN_PARSED_BY_DOXYGEN
368 template<typename Other>
370 : m_indices(other.derived().nestedExpression().size())
371 {
374 for (StorageIndex i=0; i<end;++i)
375 m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i;
376 }
377 template<typename Lhs,typename Rhs>
378 PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
379 : m_indices(lhs.indices().size())
380 {
381 Base::assignProduct(lhs,rhs);
382 }
383#endif
384
385 protected:
386
388};
389
390
391namespace internal {
392template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
393struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
394 : traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
395{
398 typedef _StorageIndex StorageIndex;
399 typedef void Scalar;
400};
401}
402
403template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
404class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess>
405 : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
406{
409 public:
410
411 #ifndef EIGEN_PARSED_BY_DOXYGEN
412 typedef typename Traits::IndicesType IndicesType;
413 typedef typename IndicesType::Scalar StorageIndex;
414 #endif
415
416 inline Map(const StorageIndex* indicesPtr)
417 : m_indices(indicesPtr)
418 {}
419
420 inline Map(const StorageIndex* indicesPtr, Index size)
421 : m_indices(indicesPtr,size)
422 {}
423
424 /** Copies the other permutation into *this */
425 template<typename Other>
427 { return Base::operator=(other.derived()); }
428
429 /** Assignment from the Transpositions \a tr */
430 template<typename Other>
432 { return Base::operator=(tr.derived()); }
433
434 #ifndef EIGEN_PARSED_BY_DOXYGEN
435 /** This is a special case of the templated operator=. Its purpose is to
436 * prevent a default operator= from hiding the templated operator=.
437 */
438 Map& operator=(const Map& other)
439 {
440 m_indices = other.m_indices;
441 return *this;
442 }
443 #endif
444
445 /** const version of indices(). */
446 const IndicesType& indices() const { return m_indices; }
447 /** \returns a reference to the stored array representing the permutation. */
448 IndicesType& indices() { return m_indices; }
449
450 protected:
451
453};
454
455template<typename _IndicesType> class TranspositionsWrapper;
456namespace internal {
457template<typename _IndicesType>
458struct traits<PermutationWrapper<_IndicesType> >
459{
461 typedef void Scalar;
462 typedef typename _IndicesType::Scalar StorageIndex;
463 typedef _IndicesType IndicesType;
464 enum {
465 RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
466 ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
467 MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
468 MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
469 Flags = 0
470 };
471};
472}
473
474/** \class PermutationWrapper
475 * \ingroup Core_Module
476 *
477 * \brief Class to view a vector of integers as a permutation matrix
478 *
479 * \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
480 *
481 * This class allows to view any vector expression of integers as a permutation matrix.
482 *
483 * \sa class PermutationBase, class PermutationMatrix
484 */
485template<typename _IndicesType>
486class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
487{
490 public:
491
492 #ifndef EIGEN_PARSED_BY_DOXYGEN
493 typedef typename Traits::IndicesType IndicesType;
494 #endif
495
498 {}
499
500 /** const version of indices(). */
502 indices() const { return m_indices; }
503
504 protected:
505
506 typename IndicesType::Nested m_indices;
507};
508
509
510/** \returns the matrix with the permutation applied to the columns.
511 */
512template<typename MatrixDerived, typename PermutationDerived>
516 const PermutationBase<PermutationDerived>& permutation)
517{
519 (matrix.derived(), permutation.derived());
520}
521
522/** \returns the matrix with the permutation applied to the rows.
523 */
524template<typename PermutationDerived, typename MatrixDerived>
526const Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
528 const MatrixBase<MatrixDerived>& matrix)
529{
531 (permutation.derived(), matrix.derived());
532}
533
534
535template<typename PermutationType>
536class InverseImpl<PermutationType, PermutationStorage>
537 : public EigenBase<Inverse<PermutationType> >
538{
539 typedef typename PermutationType::PlainPermutationType PlainPermutationType;
541 protected:
543 public:
545 using EigenBase<Inverse<PermutationType> >::derived;
546
547 #ifndef EIGEN_PARSED_BY_DOXYGEN
548 typedef typename PermutationType::DenseMatrixType DenseMatrixType;
549 enum {
550 RowsAtCompileTime = PermTraits::RowsAtCompileTime,
551 ColsAtCompileTime = PermTraits::ColsAtCompileTime,
552 MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime,
553 MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime
554 };
555 #endif
556
557 #ifndef EIGEN_PARSED_BY_DOXYGEN
558 template<typename DenseDerived>
560 {
561 other.setZero();
562 for (Index i=0; i<derived().rows();++i)
563 other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1);
564 }
565 #endif
566
567 /** \return the equivalent permutation matrix */
568 PlainPermutationType eval() const { return derived(); }
569
570 DenseMatrixType toDenseMatrix() const { return derived(); }
571
572 /** \returns the matrix with the inverse permutation applied to the columns.
573 */
574 template<typename OtherDerived> friend
576 operator*(const MatrixBase<OtherDerived>& matrix, const InverseType& trPerm)
577 {
578 return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived());
579 }
580
581 /** \returns the matrix with the inverse permutation applied to the rows.
582 */
583 template<typename OtherDerived>
586 {
587 return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived());
588 }
589};
590
591template<typename Derived>
593{
594 return derived();
595}
596
597namespace internal {
598
600
601} // end namespace internal
602
603} // end namespace Eigen
604
605#endif // EIGEN_PERMUTATIONMATRIX_H
#define eigen_internal_assert(x)
Definition: Macros.h:1053
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define eigen_assert(x)
Definition: Macros.h:1047
EIGEN_DEVICE_FUNC Derived & setZero()
Sets all coefficients in this expression to zero.
Definition: CwiseNullaryOp.h:546
Expression of the inverse of another expression.
Definition: Inverse.h:44
void evalTo(MatrixBase< DenseDerived > &other) const
Definition: PermutationMatrix.h:559
DenseMatrixType toDenseMatrix() const
Definition: PermutationMatrix.h:570
InverseImpl()
Definition: PermutationMatrix.h:542
PermutationType::DenseMatrixType DenseMatrixType
Definition: PermutationMatrix.h:548
PlainPermutationType eval() const
Definition: PermutationMatrix.h:568
Inverse< PermutationType > InverseType
Definition: PermutationMatrix.h:544
const Product< InverseType, OtherDerived, AliasFreeProduct > operator*(const MatrixBase< OtherDerived > &matrix) const
Definition: PermutationMatrix.h:585
friend const Product< OtherDerived, InverseType, AliasFreeProduct > operator*(const MatrixBase< OtherDerived > &matrix, const InverseType &trPerm)
Definition: PermutationMatrix.h:576
Definition: Inverse.h:70
Map & operator=(const Map &other)
This is a special case of the templated operator=.
Definition: PermutationMatrix.h:438
Map & operator=(const TranspositionsBase< Other > &tr)
Assignment from the Transpositions tr.
Definition: PermutationMatrix.h:431
Map(const StorageIndex *indicesPtr, Index size)
Definition: PermutationMatrix.h:420
Map & operator=(const PermutationBase< Other > &other)
Copies the other permutation into *this.
Definition: PermutationMatrix.h:426
const IndicesType & indices() const
const version of indices().
Definition: PermutationMatrix.h:446
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
MapBase< Map > Base
Definition: Map.h:99
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
const PermutationWrapper< const Derived > asPermutation() const
Definition: PermutationMatrix.h:592
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
Base class for permutations.
Definition: PermutationMatrix.h:47
InverseReturnType transpose() const
Definition: PermutationMatrix.h:191
Derived & applyTranspositionOnTheLeft(Index i, Index j)
Multiplies *this by the transposition on the left.
Definition: PermutationMatrix.h:155
void assignProduct(const Lhs &lhs, const Rhs &rhs)
Definition: PermutationMatrix.h:205
void resize(Index newSize)
Resizes to given size.
Definition: PermutationMatrix.h:125
Traits::IndicesType IndicesType
Definition: PermutationMatrix.h:53
EIGEN_DEVICE_FUNC Index rows() const
Definition: PermutationMatrix.h:91
Traits::StorageIndex StorageIndex
Definition: PermutationMatrix.h:61
PlainPermutationType PlainObject
Definition: PermutationMatrix.h:66
EIGEN_DEVICE_FUNC Index cols() const
Definition: PermutationMatrix.h:94
Index determinant() const
Definition: PermutationMatrix.h:242
Inverse< Derived > InverseReturnType
Definition: PermutationMatrix.h:68
EIGEN_DEVICE_FUNC Index size() const
Definition: PermutationMatrix.h:97
Derived & applyTranspositionOnTheRight(Index i, Index j)
Multiplies *this by the transposition on the right.
Definition: PermutationMatrix.h:174
friend PlainPermutationType operator*(const InverseImpl< Other, PermutationStorage > &other, const PermutationBase &perm)
Definition: PermutationMatrix.h:235
PermutationMatrix< IndicesType::SizeAtCompileTime, IndicesType::MaxSizeAtCompileTime, StorageIndex > PlainPermutationType
Definition: PermutationMatrix.h:65
void setIdentity()
Sets *this to be the identity permutation matrix.
Definition: PermutationMatrix.h:131
Derived & operator=(const PermutationBase< OtherDerived > &other)
Copies the other permutation into *this.
Definition: PermutationMatrix.h:74
IndicesType & indices()
Definition: PermutationMatrix.h:121
Matrix< StorageIndex, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime > DenseMatrixType
Definition: PermutationMatrix.h:63
void evalTo(MatrixBase< DenseDerived > &other) const
Definition: PermutationMatrix.h:101
void Scalar
Definition: PermutationMatrix.h:69
void setIdentity(Index newSize)
Sets *this to be the identity permutation matrix of given size.
Definition: PermutationMatrix.h:140
PlainPermutationType operator*(const InverseImpl< Other, PermutationStorage > &other) const
Definition: PermutationMatrix.h:227
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
const IndicesType & indices() const
const version of indices().
Definition: PermutationMatrix.h:119
InverseReturnType inverse() const
Definition: PermutationMatrix.h:185
DenseMatrixType toDenseMatrix() const
Definition: PermutationMatrix.h:113
Derived & operator=(const TranspositionsBase< OtherDerived > &tr)
Assignment from the Transpositions tr.
Definition: PermutationMatrix.h:82
PlainPermutationType operator*(const PermutationBase< Other > &other) const
Definition: PermutationMatrix.h:219
@ MaxRowsAtCompileTime
Definition: PermutationMatrix.h:58
@ RowsAtCompileTime
Definition: PermutationMatrix.h:56
@ MaxColsAtCompileTime
Definition: PermutationMatrix.h:59
@ Flags
Definition: PermutationMatrix.h:55
@ ColsAtCompileTime
Definition: PermutationMatrix.h:57
void assignTranspose(const PermutationBase< OtherDerived > &other)
Definition: PermutationMatrix.h:200
Permutation matrix.
Definition: PermutationMatrix.h:298
PermutationMatrix(const TranspositionsBase< Other > &tr)
Convert the Transpositions tr to a permutation matrix.
Definition: PermutationMatrix.h:338
PermutationMatrix(const MatrixBase< Other > &indices)
Generic constructor from expression of the indices.
Definition: PermutationMatrix.h:333
PermutationMatrix(const PermutationBase< OtherDerived > &other)
Copy constructor.
Definition: PermutationMatrix.h:322
PermutationMatrix & operator=(const PermutationBase< Other > &other)
Copies the other permutation into *this.
Definition: PermutationMatrix.h:346
PermutationMatrix(const InverseImpl< Other, PermutationStorage > &other)
Definition: PermutationMatrix.h:369
Traits::IndicesType IndicesType
Definition: PermutationMatrix.h:306
const IndicesType & indices() const
const version of indices().
Definition: PermutationMatrix.h:360
IndicesType m_indices
Definition: PermutationMatrix.h:387
IndicesType & indices()
Definition: PermutationMatrix.h:362
PermutationMatrix & operator=(const TranspositionsBase< Other > &tr)
Assignment from the Transpositions tr.
Definition: PermutationMatrix.h:354
const PermutationMatrix & Nested
Definition: PermutationMatrix.h:303
PermutationMatrix()
Definition: PermutationMatrix.h:310
PermutationMatrix(Index size)
Constructs an uninitialized permutation matrix of given size.
Definition: PermutationMatrix.h:315
Traits::StorageIndex StorageIndex
Definition: PermutationMatrix.h:307
PermutationMatrix(internal::PermPermProduct_t, const Lhs &lhs, const Rhs &rhs)
Definition: PermutationMatrix.h:378
Class to view a vector of integers as a permutation matrix.
Definition: PermutationMatrix.h:487
PermutationWrapper(const IndicesType &indices)
Definition: PermutationMatrix.h:496
const internal::remove_all< typenameIndicesType::Nested >::type & indices() const
const version of indices().
Definition: PermutationMatrix.h:502
IndicesType::Nested m_indices
Definition: PermutationMatrix.h:506
Traits::IndicesType IndicesType
Definition: PermutationMatrix.h:493
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:75
Definition: Transpositions.h:17
EIGEN_DEVICE_FUNC Index size() const
Definition: Transpositions.h:41
EIGEN_DEVICE_FUNC const StorageIndex & coeff(Index i) const
Direct access to the underlying index vector.
Definition: Transpositions.h:51
EIGEN_DEVICE_FUNC Derived & derived()
Definition: Transpositions.h:27
Definition: Transpositions.h:274
PermPermProduct_t
Definition: PermutationMatrix.h:18
@ PermPermProduct
Definition: PermutationMatrix.h:18
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
static EIGEN_DEPRECATED const end_t end
Definition: IndexedViewHelper.h:181
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
const Product< SparseDerived, PermDerived, AliasFreeProduct > operator*(const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
Definition: SparsePermutation.h:147
Definition: Eigen_Colamd.h:50
void swap(wpi::SmallVectorImpl< T > &LHS, wpi::SmallVectorImpl< T > &RHS)
Implement std::swap in terms of SmallVector swap.
Definition: SmallVector.h:1299
static constexpr uint64_t k0
Some primes between 2^63 and 2^64 for various uses.
Definition: Hashing.h:170
Definition: Constants.h:528
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: Constants.h:535
The type used to identify a permutation storage.
Definition: Constants.h:516
EigenBase2EigenBase Kind
Definition: PermutationMatrix.h:599
Definition: AssignEvaluator.h:817
Definition: AssignEvaluator.h:815
T type
Definition: Meta.h:126
Map< const Matrix< _StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1 >, _PacketAccess > IndicesType
Definition: PermutationMatrix.h:397
Matrix< _StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1 > IndicesType
Definition: PermutationMatrix.h:277
void Scalar
Definition: PermutationMatrix.h:461
_IndicesType IndicesType
Definition: PermutationMatrix.h:463
PermutationStorage StorageKind
Definition: PermutationMatrix.h:460
_IndicesType::Scalar StorageIndex
Definition: PermutationMatrix.h:462