WPILibC++ 2023.4.3
Householder.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_HOUSEHOLDER_H
12#define EIGEN_HOUSEHOLDER_H
13
14namespace Eigen {
15
16namespace internal {
17template<int n> struct decrement_size
18{
19 enum {
20 ret = n==Dynamic ? n : n-1
21 };
22};
23}
24
25/** Computes the elementary reflector H such that:
26 * \f$ H *this = [ beta 0 ... 0]^T \f$
27 * where the transformation H is:
28 * \f$ H = I - tau v v^*\f$
29 * and the vector v is:
30 * \f$ v^T = [1 essential^T] \f$
31 *
32 * The essential part of the vector \c v is stored in *this.
33 *
34 * On output:
35 * \param tau the scaling factor of the Householder transformation
36 * \param beta the result of H * \c *this
37 *
38 * \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(),
39 * MatrixBase::applyHouseholderOnTheRight()
40 */
41template<typename Derived>
44{
46 makeHouseholder(essentialPart, tau, beta);
47}
48
49/** Computes the elementary reflector H such that:
50 * \f$ H *this = [ beta 0 ... 0]^T \f$
51 * where the transformation H is:
52 * \f$ H = I - tau v v^*\f$
53 * and the vector v is:
54 * \f$ v^T = [1 essential^T] \f$
55 *
56 * On output:
57 * \param essential the essential part of the vector \c v
58 * \param tau the scaling factor of the Householder transformation
59 * \param beta the result of H * \c *this
60 *
61 * \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(),
62 * MatrixBase::applyHouseholderOnTheRight()
63 */
64template<typename Derived>
65template<typename EssentialPart>
68 EssentialPart& essential,
69 Scalar& tau,
70 RealScalar& beta) const
71{
72 using std::sqrt;
73 using numext::conj;
74
77
78 RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
79 Scalar c0 = coeff(0);
81
82 if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol)
83 {
84 tau = RealScalar(0);
85 beta = numext::real(c0);
86 essential.setZero();
87 }
88 else
89 {
90 beta = sqrt(numext::abs2(c0) + tailSqNorm);
91 if (numext::real(c0)>=RealScalar(0))
92 beta = -beta;
93 essential = tail / (c0 - beta);
94 tau = conj((beta - c0) / beta);
95 }
96}
97
98/** Apply the elementary reflector H given by
99 * \f$ H = I - tau v v^*\f$
100 * with
101 * \f$ v^T = [1 essential^T] \f$
102 * from the left to a vector or matrix.
103 *
104 * On input:
105 * \param essential the essential part of the vector \c v
106 * \param tau the scaling factor of the Householder transformation
107 * \param workspace a pointer to working space with at least
108 * this->cols() entries
109 *
110 * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
111 * MatrixBase::applyHouseholderOnTheRight()
112 */
113template<typename Derived>
114template<typename EssentialPart>
117 const EssentialPart& essential,
118 const Scalar& tau,
119 Scalar* workspace)
120{
121 if(rows() == 1)
122 {
123 *this *= Scalar(1)-tau;
124 }
125 else if(tau!=Scalar(0))
126 {
129 tmp.noalias() = essential.adjoint() * bottom;
130 tmp += this->row(0);
131 this->row(0) -= tau * tmp;
132 bottom.noalias() -= tau * essential * tmp;
133 }
134}
135
136/** Apply the elementary reflector H given by
137 * \f$ H = I - tau v v^*\f$
138 * with
139 * \f$ v^T = [1 essential^T] \f$
140 * from the right to a vector or matrix.
141 *
142 * On input:
143 * \param essential the essential part of the vector \c v
144 * \param tau the scaling factor of the Householder transformation
145 * \param workspace a pointer to working space with at least
146 * this->rows() entries
147 *
148 * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
149 * MatrixBase::applyHouseholderOnTheLeft()
150 */
151template<typename Derived>
152template<typename EssentialPart>
155 const EssentialPart& essential,
156 const Scalar& tau,
157 Scalar* workspace)
158{
159 if(cols() == 1)
160 {
161 *this *= Scalar(1)-tau;
162 }
163 else if(tau!=Scalar(0))
164 {
167 tmp.noalias() = right * essential;
168 tmp += this->col(0);
169 this->col(0) -= tau * tmp;
170 right.noalias() -= tau * tmp * essential.adjoint();
171 }
172}
173
174} // end namespace Eigen
175
176#endif // EIGEN_HOUSEHOLDER_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:1097
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE FixedSegmentReturnType< internal::get_fixed_value< NType >::value >::Type tail(NType n)
Definition: BlockMethods.h:1257
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RowXpr row(Index i)
This is the const version of row(). *‍/.
Definition: BlockMethods.h:1118
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
EIGEN_DEVICE_FUNC const ImagReturnType imag() const
Definition: CommonCwiseUnaryOps.h:109
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
Definition: StaticAssert.h:142
constexpr common_return_t< T1, T2 > beta(const T1 a, const T2 b) noexcept
Compile-time beta function.
Definition: beta.hpp:36
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:105
NumTraits< Scalar >::Real RealScalar
Definition: DenseBase.h:73
internal::traits< Derived >::Scalar Scalar
The numeric type of the expression' coefficients, e.g.
Definition: DenseBase.h:66
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
EIGEN_DEVICE_FUNC void makeHouseholderInPlace(Scalar &tau, RealScalar &beta)
Computes the elementary reflector H such that: where the transformation H is: and the vector v is: ...
Definition: Householder.h:43
EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft(const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
Apply the elementary reflector H given by with from the left to a vector or matrix.
Definition: Householder.h:116
EIGEN_DEVICE_FUNC void makeHouseholder(EssentialPart &essential, Scalar &tau, RealScalar &beta) const
Computes the elementary reflector H such that: where the transformation H is: and the vector v is: ...
Definition: Householder.h:67
EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight(const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
Apply the elementary reflector H given by with from the right to a vector or matrix.
Definition: Householder.h:154
Expression of a fixed-size or dynamic-size sub-vector.
Definition: VectorBlock.h:60
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
Definition: Householder.h:18
@ ret
Definition: Householder.h:20