WPILibC++ 2023.4.3
BDCSVD.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5// research report written by Ming Gu and Stanley C.Eisenstat
6// The code variable names correspond to the names they used in their
7// report
8//
9// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
14// Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
15//
16// Source Code Form is subject to the terms of the Mozilla
17// Public License v. 2.0. If a copy of the MPL was not distributed
18// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
19
20#ifndef EIGEN_BDCSVD_H
21#define EIGEN_BDCSVD_H
22// #define EIGEN_BDCSVD_DEBUG_VERBOSE
23// #define EIGEN_BDCSVD_SANITY_CHECKS
24
25#ifdef EIGEN_BDCSVD_SANITY_CHECKS
26#undef eigen_internal_assert
27#define eigen_internal_assert(X) assert(X);
28#endif
29
30namespace Eigen {
31
32#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
33IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
34#endif
35
36template<typename _MatrixType> class BDCSVD;
37
38namespace internal {
39
40template<typename _MatrixType>
41struct traits<BDCSVD<_MatrixType> >
42 : traits<_MatrixType>
43{
44 typedef _MatrixType MatrixType;
45};
46
47} // end namespace internal
48
49
50/** \ingroup SVD_Module
51 *
52 *
53 * \class BDCSVD
54 *
55 * \brief class Bidiagonal Divide and Conquer SVD
56 *
57 * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
58 *
59 * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
60 * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
61 * You can control the switching size with the setSwitchSize() method, default is 16.
62 * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
63 * recommended and can several order of magnitude faster.
64 *
65 * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
66 * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless
67 * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
68 * significantly degrade the accuracy.
69 *
70 * \sa class JacobiSVD
71 */
72template<typename _MatrixType>
73class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
74{
75 typedef SVDBase<BDCSVD> Base;
76
77public:
78 using Base::rows;
79 using Base::cols;
80 using Base::computeU;
81 using Base::computeV;
82
83 typedef _MatrixType MatrixType;
84 typedef typename MatrixType::Scalar Scalar;
87 enum {
88 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
89 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
91 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
92 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
94 MatrixOptions = MatrixType::Options
95 };
96
100
108
109 /** \brief Default Constructor.
110 *
111 * The default constructor is useful in cases in which the user intends to
112 * perform decompositions via BDCSVD::compute(const MatrixType&).
113 */
114 BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
115 {}
116
117
118 /** \brief Default Constructor with memory preallocation
119 *
120 * Like the default constructor but with preallocation of the internal data
121 * according to the specified problem size.
122 * \sa BDCSVD()
123 */
124 BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
125 : m_algoswap(16), m_numIters(0)
126 {
127 allocate(rows, cols, computationOptions);
128 }
129
130 /** \brief Constructor performing the decomposition of given matrix.
131 *
132 * \param matrix the matrix to decompose
133 * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
134 * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
135 * #ComputeFullV, #ComputeThinV.
136 *
137 * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
138 * available with the (non - default) FullPivHouseholderQR preconditioner.
139 */
140 BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
141 : m_algoswap(16), m_numIters(0)
142 {
143 compute(matrix, computationOptions);
144 }
145
147 {
148 }
149
150 /** \brief Method performing the decomposition of given matrix using custom options.
151 *
152 * \param matrix the matrix to decompose
153 * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
154 * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
155 * #ComputeFullV, #ComputeThinV.
156 *
157 * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
158 * available with the (non - default) FullPivHouseholderQR preconditioner.
159 */
160 BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
161
162 /** \brief Method performing the decomposition of given matrix using current options.
163 *
164 * \param matrix the matrix to decompose
165 *
166 * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
167 */
168 BDCSVD& compute(const MatrixType& matrix)
169 {
170 return compute(matrix, this->m_computationOptions);
171 }
172
173 void setSwitchSize(int s)
174 {
175 eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
176 m_algoswap = s;
177 }
178
179private:
180 void allocate(Index rows, Index cols, unsigned int computationOptions);
181 void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
182 void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
183 void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
184 void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
185 void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
186 void deflation43(Index firstCol, Index shift, Index i, Index size);
187 void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
188 void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
189 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
190 void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
191 void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
192 static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
193
194protected:
202
204 using Base::m_diagSize;
209 using Base::m_matrixU;
210 using Base::m_matrixV;
211 using Base::m_info;
214
215public:
217}; //end class BDCSVD
218
219
220// Method to allocate and initialize matrix and attributes
221template<typename MatrixType>
222void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
223{
224 m_isTranspose = (cols > rows);
225
226 if (Base::allocate(rows, cols, computationOptions))
227 return;
228
229 m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
230 m_compU = computeV();
231 m_compV = computeU();
232 if (m_isTranspose)
233 std::swap(m_compU, m_compV);
234
235 if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
236 else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
237
238 if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
239
240 m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
241 m_workspaceI.resize(3*m_diagSize);
242}// end allocate
243
244template<typename MatrixType>
245BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
246{
247#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
248 std::cout << "\n\n\n======================================================================================================================\n\n\n";
249#endif
250 allocate(matrix.rows(), matrix.cols(), computationOptions);
251 using std::abs;
252
253 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
254
255 //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
256 if(matrix.cols() < m_algoswap)
257 {
258 // FIXME this line involves temporaries
259 JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
260 m_isInitialized = true;
261 m_info = jsvd.info();
262 if (m_info == Success || m_info == NoConvergence) {
263 if(computeU()) m_matrixU = jsvd.matrixU();
264 if(computeV()) m_matrixV = jsvd.matrixV();
265 m_singularValues = jsvd.singularValues();
266 m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
267 }
268 return *this;
269 }
270
271 //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
272 RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
273 if (!(numext::isfinite)(scale)) {
274 m_isInitialized = true;
275 m_info = InvalidInput;
276 return *this;
277 }
278
279 if(scale==Literal(0)) scale = Literal(1);
281 if (m_isTranspose) copy = matrix.adjoint()/scale;
282 else copy = matrix/scale;
283
284 //**** step 1 - Bidiagonalization
285 // FIXME this line involves temporaries
287
288 //**** step 2 - Divide & Conquer
289 m_naiveU.setZero();
290 m_naiveV.setZero();
291 // FIXME this line involves a temporary matrix
292 m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
293 m_computed.template bottomRows<1>().setZero();
294 divide(0, m_diagSize - 1, 0, 0, 0);
295 if (m_info != Success && m_info != NoConvergence) {
296 m_isInitialized = true;
297 return *this;
298 }
299
300 //**** step 3 - Copy singular values and vectors
301 for (int i=0; i<m_diagSize; i++)
302 {
303 RealScalar a = abs(m_computed.coeff(i, i));
304 m_singularValues.coeffRef(i) = a * scale;
305 if (a<considerZero)
306 {
307 m_nonzeroSingularValues = i;
308 m_singularValues.tail(m_diagSize - i - 1).setZero();
309 break;
310 }
311 else if (i == m_diagSize - 1)
312 {
313 m_nonzeroSingularValues = i + 1;
314 break;
315 }
316 }
317
318#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
319// std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
320// std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
321#endif
322 if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
323 else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
324
325 m_isInitialized = true;
326 return *this;
327}// end compute
328
329
330template<typename MatrixType>
331template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
332void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
333{
334 // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
335 if (computeU())
336 {
337 Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
338 m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
339 m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
340 householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
341 }
342 if (computeV())
343 {
344 Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
345 m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
346 m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
347 householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
348 }
349}
350
351/** \internal
352 * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
353 * A = [A1]
354 * [A2]
355 * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
356 * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
357 * enough.
358 */
359template<typename MatrixType>
360void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
361{
362 Index n = A.rows();
363 if(n>100)
364 {
365 // If the matrices are large enough, let's exploit the sparse structure of A by
366 // splitting it in half (wrt n1), and packing the non-zero columns.
367 Index n2 = n - n1;
368 Map<MatrixXr> A1(m_workspace.data() , n1, n);
369 Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
370 Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
371 Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
372 Index k1=0, k2=0;
373 for(Index j=0; j<n; ++j)
374 {
375 if( (A.col(j).head(n1).array()!=Literal(0)).any() )
376 {
377 A1.col(k1) = A.col(j).head(n1);
378 B1.row(k1) = B.row(j);
379 ++k1;
380 }
381 if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
382 {
383 A2.col(k2) = A.col(j).tail(n2);
384 B2.row(k2) = B.row(j);
385 ++k2;
386 }
387 }
388
389 A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
390 A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
391 }
392 else
393 {
394 Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
395 tmp.noalias() = A*B;
396 A = tmp;
397 }
398}
399
400// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
401// place of the submatrix we are currently working on.
402
403//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
404//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
405// lastCol + 1 - firstCol is the size of the submatrix.
406//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
407//@param firstRowW : Same as firstRowW with the column.
408//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
409// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
410template<typename MatrixType>
411void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
412{
413 // requires rows = cols + 1;
414 using std::pow;
415 using std::sqrt;
416 using std::abs;
417 const Index n = lastCol - firstCol + 1;
418 const Index k = n/2;
419 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
420 RealScalar alphaK;
421 RealScalar betaK;
422 RealScalar r0;
423 RealScalar lambda, phi, c0, s0;
424 VectorType l, f;
425 // We use the other algorithm which is more efficient for small
426 // matrices.
427 if (n < m_algoswap)
428 {
429 // FIXME this line involves temporaries
430 JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
431 m_info = b.info();
432 if (m_info != Success && m_info != NoConvergence) return;
433 if (m_compU)
434 m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
435 else
436 {
437 m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
438 m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
439 }
440 if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
441 m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
442 m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
443 return;
444 }
445 // We use the divide and conquer algorithm
446 alphaK = m_computed(firstCol + k, firstCol + k);
447 betaK = m_computed(firstCol + k + 1, firstCol + k);
448 // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
449 // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
450 // right submatrix before the left one.
451 divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
452 if (m_info != Success && m_info != NoConvergence) return;
453 divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
454 if (m_info != Success && m_info != NoConvergence) return;
455
456 if (m_compU)
457 {
458 lambda = m_naiveU(firstCol + k, firstCol + k);
459 phi = m_naiveU(firstCol + k + 1, lastCol + 1);
460 }
461 else
462 {
463 lambda = m_naiveU(1, firstCol + k);
464 phi = m_naiveU(0, lastCol + 1);
465 }
466 r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
467 if (m_compU)
468 {
469 l = m_naiveU.row(firstCol + k).segment(firstCol, k);
470 f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
471 }
472 else
473 {
474 l = m_naiveU.row(1).segment(firstCol, k);
475 f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
476 }
477 if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
478 if (r0<considerZero)
479 {
480 c0 = Literal(1);
481 s0 = Literal(0);
482 }
483 else
484 {
485 c0 = alphaK * lambda / r0;
486 s0 = betaK * phi / r0;
487 }
488
489#ifdef EIGEN_BDCSVD_SANITY_CHECKS
490 assert(m_naiveU.allFinite());
491 assert(m_naiveV.allFinite());
492 assert(m_computed.allFinite());
493#endif
494
495 if (m_compU)
496 {
497 MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
498 // we shiftW Q1 to the right
499 for (Index i = firstCol + k - 1; i >= firstCol; i--)
500 m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
501 // we shift q1 at the left with a factor c0
502 m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
503 // last column = q1 * - s0
504 m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
505 // first column = q2 * s0
506 m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
507 // q2 *= c0
508 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
509 }
510 else
511 {
512 RealScalar q1 = m_naiveU(0, firstCol + k);
513 // we shift Q1 to the right
514 for (Index i = firstCol + k - 1; i >= firstCol; i--)
515 m_naiveU(0, i + 1) = m_naiveU(0, i);
516 // we shift q1 at the left with a factor c0
517 m_naiveU(0, firstCol) = (q1 * c0);
518 // last column = q1 * - s0
519 m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
520 // first column = q2 * s0
521 m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
522 // q2 *= c0
523 m_naiveU(1, lastCol + 1) *= c0;
524 m_naiveU.row(1).segment(firstCol + 1, k).setZero();
525 m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
526 }
527
528#ifdef EIGEN_BDCSVD_SANITY_CHECKS
529 assert(m_naiveU.allFinite());
530 assert(m_naiveV.allFinite());
531 assert(m_computed.allFinite());
532#endif
533
534 m_computed(firstCol + shift, firstCol + shift) = r0;
535 m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
536 m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
537
538#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
539 ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
540#endif
541 // Second part: try to deflate singular values in combined matrix
542 deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
543#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
544 ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
545 std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
546 std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
547 std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
548 static int count = 0;
549 std::cout << "# " << ++count << "\n\n";
550 assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
551// assert(count<681);
552// assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
553#endif
554
555 // Third part: compute SVD of combined matrix
556 MatrixXr UofSVD, VofSVD;
557 VectorType singVals;
558 computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
559
560#ifdef EIGEN_BDCSVD_SANITY_CHECKS
561 assert(UofSVD.allFinite());
562 assert(VofSVD.allFinite());
563#endif
564
565 if (m_compU)
566 structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
567 else
568 {
569 Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
570 tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
571 m_naiveU.middleCols(firstCol, n + 1) = tmp;
572 }
573
574 if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
575
576#ifdef EIGEN_BDCSVD_SANITY_CHECKS
577 assert(m_naiveU.allFinite());
578 assert(m_naiveV.allFinite());
579 assert(m_computed.allFinite());
580#endif
581
582 m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
583 m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
584}// end divide
585
586// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
587// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
588// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
589// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
590//
591// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
592// handling of round-off errors, be consistent in ordering
593// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
594template <typename MatrixType>
595void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
596{
597 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
598 using std::abs;
599 ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
600 m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
601 ArrayRef diag = m_workspace.head(n);
602 diag(0) = Literal(0);
603
604 // Allocate space for singular values and vectors
605 singVals.resize(n);
606 U.resize(n+1, n+1);
607 if (m_compV) V.resize(n, n);
608
609#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
610 if (col0.hasNaN() || diag.hasNaN())
611 std::cout << "\n\nHAS NAN\n\n";
612#endif
613
614 // Many singular values might have been deflated, the zero ones have been moved to the end,
615 // but others are interleaved and we must ignore them at this stage.
616 // To this end, let's compute a permutation skipping them:
617 Index actual_n = n;
618 while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
619 Index m = 0; // size of the deflated problem
620 for(Index k=0;k<actual_n;++k)
621 if(abs(col0(k))>considerZero)
622 m_workspaceI(m++) = k;
623 Map<ArrayXi> perm(m_workspaceI.data(),m);
624
625 Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
626 Map<ArrayXr> mus(m_workspace.data()+2*n, n);
627 Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
628
629#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
630 std::cout << "computeSVDofM using:\n";
631 std::cout << " z: " << col0.transpose() << "\n";
632 std::cout << " d: " << diag.transpose() << "\n";
633#endif
634
635 // Compute singVals, shifts, and mus
636 computeSingVals(col0, diag, perm, singVals, shifts, mus);
637
638#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
639 std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
640 std::cout << " sing-val: " << singVals.transpose() << "\n";
641 std::cout << " mu: " << mus.transpose() << "\n";
642 std::cout << " shift: " << shifts.transpose() << "\n";
643
644 {
645 std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
646 std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
647 assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
648 std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
649 assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
650 }
651#endif
652
653#ifdef EIGEN_BDCSVD_SANITY_CHECKS
654 assert(singVals.allFinite());
655 assert(mus.allFinite());
656 assert(shifts.allFinite());
657#endif
658
659 // Compute zhat
660 perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
661#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
662 std::cout << " zhat: " << zhat.transpose() << "\n";
663#endif
664
665#ifdef EIGEN_BDCSVD_SANITY_CHECKS
666 assert(zhat.allFinite());
667#endif
668
669 computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
670
671#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
672 std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
673 std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
674#endif
675
676#ifdef EIGEN_BDCSVD_SANITY_CHECKS
677 assert(m_naiveU.allFinite());
678 assert(m_naiveV.allFinite());
679 assert(m_computed.allFinite());
680 assert(U.allFinite());
681 assert(V.allFinite());
682// assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
683// assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
684#endif
685
686 // Because of deflation, the singular values might not be completely sorted.
687 // Fortunately, reordering them is a O(n) problem
688 for(Index i=0; i<actual_n-1; ++i)
689 {
690 if(singVals(i)>singVals(i+1))
691 {
692 using std::swap;
693 swap(singVals(i),singVals(i+1));
694 U.col(i).swap(U.col(i+1));
695 if(m_compV) V.col(i).swap(V.col(i+1));
696 }
697 }
698
699#ifdef EIGEN_BDCSVD_SANITY_CHECKS
700 {
701 bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
702 if(!singular_values_sorted)
703 std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
704 assert(singular_values_sorted);
705 }
706#endif
707
708 // Reverse order so that singular values in increased order
709 // Because of deflation, the zeros singular-values are already at the end
710 singVals.head(actual_n).reverseInPlace();
711 U.leftCols(actual_n).rowwise().reverseInPlace();
712 if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
713
714#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
715 JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
716 std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
717 std::cout << " * sing-val: " << singVals.transpose() << "\n";
718// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
719#endif
720}
721
722template <typename MatrixType>
723typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
724{
725 Index m = perm.size();
726 RealScalar res = Literal(1);
727 for(Index i=0; i<m; ++i)
728 {
729 Index j = perm(i);
730 // The following expression could be rewritten to involve only a single division,
731 // but this would make the expression more sensitive to overflow.
732 res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
733 }
734 return res;
735
736}
737
738template <typename MatrixType>
739void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
740 VectorType& singVals, ArrayRef shifts, ArrayRef mus)
741{
742 using std::abs;
743 using std::swap;
744 using std::sqrt;
745
746 Index n = col0.size();
747 Index actual_n = n;
748 // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
749 // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
750 while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
751
752 for (Index k = 0; k < n; ++k)
753 {
754 if (col0(k) == Literal(0) || actual_n==1)
755 {
756 // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
757 // if actual_n==1, then the deflated problem is already diagonalized
758 singVals(k) = k==0 ? col0(0) : diag(k);
759 mus(k) = Literal(0);
760 shifts(k) = k==0 ? col0(0) : diag(k);
761 continue;
762 }
763
764 // otherwise, use secular equation to find singular value
765 RealScalar left = diag(k);
766 RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
767 if(k==actual_n-1)
768 right = (diag(actual_n-1) + col0.matrix().norm());
769 else
770 {
771 // Skip deflated singular values,
772 // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
773 // This should be equivalent to using perm[]
774 Index l = k+1;
775 while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
776 right = diag(l);
777 }
778
779 // first decide whether it's closer to the left end or the right end
780 RealScalar mid = left + (right-left) / Literal(2);
781 RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
782#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
783 std::cout << "right-left = " << right-left << "\n";
784// std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left)
785// << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n";
786 std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
787 << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
788 << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
789 << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
790 << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
791 << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
792 << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
793 << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
794 << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
795 << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
796 << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
797 << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
798 << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
799#endif
800 RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
801
802 // measure everything relative to shift
803 Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
804 diagShifted = diag - shift;
805
806 if(k!=actual_n-1)
807 {
808 // check that after the shift, f(mid) is still negative:
809 RealScalar midShifted = (right - left) / RealScalar(2);
810 if(shift==right)
811 midShifted = -midShifted;
812 RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
813 if(fMidShifted>0)
814 {
815 // fMid was erroneous, fix it:
816 shift = fMidShifted > Literal(0) ? left : right;
817 diagShifted = diag - shift;
818 }
819 }
820
821 // initial guess
822 RealScalar muPrev, muCur;
823 if (shift == left)
824 {
825 muPrev = (right - left) * RealScalar(0.1);
826 if (k == actual_n-1) muCur = right - left;
827 else muCur = (right - left) * RealScalar(0.5);
828 }
829 else
830 {
831 muPrev = -(right - left) * RealScalar(0.1);
832 muCur = -(right - left) * RealScalar(0.5);
833 }
834
835 RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
836 RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
837 if (abs(fPrev) < abs(fCur))
838 {
839 swap(fPrev, fCur);
840 swap(muPrev, muCur);
841 }
842
843 // rational interpolation: fit a function of the form a / mu + b through the two previous
844 // iterates and use its zero to compute the next iterate
845 bool useBisection = fPrev*fCur>Literal(0);
846 while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
847 {
848 ++m_numIters;
849
850 // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
851 RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
852 RealScalar b = fCur - a / muCur;
853 // And find mu such that f(mu)==0:
854 RealScalar muZero = -a/b;
855 RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
856
857#ifdef EIGEN_BDCSVD_SANITY_CHECKS
858 assert((numext::isfinite)(fZero));
859#endif
860
861 muPrev = muCur;
862 fPrev = fCur;
863 muCur = muZero;
864 fCur = fZero;
865
866 if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
867 if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
868 if (abs(fCur)>abs(fPrev)) useBisection = true;
869 }
870
871 // fall back on bisection method if rational interpolation did not work
872 if (useBisection)
873 {
874#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
875 std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
876#endif
877 RealScalar leftShifted, rightShifted;
878 if (shift == left)
879 {
880 // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
881 // the factor 2 is to be more conservative
882 leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
883
884 // check that we did it right:
885 eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
886 // I don't understand why the case k==0 would be special there:
887 // if (k == 0) rightShifted = right - left; else
888 rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
889 }
890 else
891 {
892 leftShifted = -(right - left) * RealScalar(0.51);
893 if(k+1<n)
894 rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
895 else
896 rightShifted = -(std::numeric_limits<RealScalar>::min)();
897 }
898
899 RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
900 eigen_internal_assert(fLeft<Literal(0));
901
902#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
903 RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
904#endif
905
906#ifdef EIGEN_BDCSVD_SANITY_CHECKS
907 if(!(numext::isfinite)(fLeft))
908 std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
909 assert((numext::isfinite)(fLeft));
910
911 if(!(numext::isfinite)(fRight))
912 std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
913 // assert((numext::isfinite)(fRight));
914#endif
915
916#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
917 if(!(fLeft * fRight<0))
918 {
919 std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
920 << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
921 std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
922 << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
923 << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
924 << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
925 }
926#endif
927 eigen_internal_assert(fLeft * fRight < Literal(0));
928
929 if(fLeft<Literal(0))
930 {
931 while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
932 {
933 RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
934 fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
936
937 if (fLeft * fMid < Literal(0))
938 {
939 rightShifted = midShifted;
940 }
941 else
942 {
943 leftShifted = midShifted;
944 fLeft = fMid;
945 }
946 }
947 muCur = (leftShifted + rightShifted) / Literal(2);
948 }
949 else
950 {
951 // We have a problem as shifting on the left or right give either a positive or negative value
952 // at the middle of [left,right]...
953 // Instead fo abbording or entering an infinite loop,
954 // let's just use the middle as the estimated zero-crossing:
955 muCur = (right - left) * RealScalar(0.5);
956 if(shift == right)
957 muCur = -muCur;
958 }
959 }
960
961 singVals[k] = shift + muCur;
962 shifts[k] = shift;
963 mus[k] = muCur;
964
965#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
966 if(k+1<n)
967 std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
968#endif
969#ifdef EIGEN_BDCSVD_SANITY_CHECKS
970 assert(k==0 || singVals[k]>=singVals[k-1]);
971 assert(singVals[k]>=diag(k));
972#endif
973
974 // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
975 // (deflation is supposed to avoid this from happening)
976 // - this does no seem to be necessary anymore -
977// if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
978// if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
979 }
980}
981
982
983// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
984template <typename MatrixType>
985void BDCSVD<MatrixType>::perturbCol0
986 (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
987 const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
988{
989 using std::sqrt;
990 Index n = col0.size();
991 Index m = perm.size();
992 if(m==0)
993 {
994 zhat.setZero();
995 return;
996 }
997 Index lastIdx = perm(m-1);
998 // The offset permits to skip deflated entries while computing zhat
999 for (Index k = 0; k < n; ++k)
1000 {
1001 if (col0(k) == Literal(0)) // deflated
1002 zhat(k) = Literal(0);
1003 else
1004 {
1005 // see equation (3.6)
1006 RealScalar dk = diag(k);
1007 RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
1008#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1009 if(prod<0) {
1010 std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
1011 std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
1012 std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
1013 }
1014 assert(prod>=0);
1015#endif
1016
1017 for(Index l = 0; l<m; ++l)
1018 {
1019 Index i = perm(l);
1020 if(i!=k)
1021 {
1022#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1023 if(i>=k && (l==0 || l-1>=m))
1024 {
1025 std::cout << "Error in perturbCol0\n";
1026 std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
1027 std::cout << " " <<diag(i) << "\n";
1028 Index j = (i<k /*|| l==0*/) ? i : perm(l-1);
1029 std::cout << " " << "j=" << j << "\n";
1030 }
1031#endif
1032 Index j = i<k ? i : perm(l-1);
1033#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1034 if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
1035 {
1036 std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
1037 }
1038 assert(dk!=Literal(0) || diag(i)!=Literal(0));
1039#endif
1040 prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
1041#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1042 assert(prod>=0);
1043#endif
1044#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1045 if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
1046 std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
1047 << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
1048#endif
1049 }
1050 }
1051#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1052 std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
1053#endif
1054 RealScalar tmp = sqrt(prod);
1055#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1056 assert((numext::isfinite)(tmp));
1057#endif
1058 zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
1059 }
1060 }
1061}
1062
1063// compute singular vectors
1064template <typename MatrixType>
1065void BDCSVD<MatrixType>::computeSingVecs
1066 (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
1067 const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
1068{
1069 Index n = zhat.size();
1070 Index m = perm.size();
1071
1072 for (Index k = 0; k < n; ++k)
1073 {
1074 if (zhat(k) == Literal(0))
1075 {
1076 U.col(k) = VectorType::Unit(n+1, k);
1077 if (m_compV) V.col(k) = VectorType::Unit(n, k);
1078 }
1079 else
1080 {
1081 U.col(k).setZero();
1082 for(Index l=0;l<m;++l)
1083 {
1084 Index i = perm(l);
1085 U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1086 }
1087 U(n,k) = Literal(0);
1088 U.col(k).normalize();
1089
1090 if (m_compV)
1091 {
1092 V.col(k).setZero();
1093 for(Index l=1;l<m;++l)
1094 {
1095 Index i = perm(l);
1096 V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1097 }
1098 V(0,k) = Literal(-1);
1099 V.col(k).normalize();
1100 }
1101 }
1102 }
1103 U.col(n) = VectorType::Unit(n+1, n);
1104}
1105
1106
1107// page 12_13
1108// i >= 1, di almost null and zi non null.
1109// We use a rotation to zero out zi applied to the left of M
1110template <typename MatrixType>
1111void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
1112{
1113 using std::abs;
1114 using std::sqrt;
1115 using std::pow;
1116 Index start = firstCol + shift;
1117 RealScalar c = m_computed(start, start);
1118 RealScalar s = m_computed(start+i, start);
1119 RealScalar r = numext::hypot(c,s);
1120 if (r == Literal(0))
1121 {
1122 m_computed(start+i, start+i) = Literal(0);
1123 return;
1124 }
1125 m_computed(start,start) = r;
1126 m_computed(start+i, start) = Literal(0);
1127 m_computed(start+i, start+i) = Literal(0);
1128
1129 JacobiRotation<RealScalar> J(c/r,-s/r);
1130 if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
1131 else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
1132}// end deflation 43
1133
1134
1135// page 13
1136// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
1137// We apply two rotations to have zj = 0;
1138// TODO deflation44 is still broken and not properly tested
1139template <typename MatrixType>
1140void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
1141{
1142 using std::abs;
1143 using std::sqrt;
1144 using std::conj;
1145 using std::pow;
1146 RealScalar c = m_computed(firstColm+i, firstColm);
1147 RealScalar s = m_computed(firstColm+j, firstColm);
1148 RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
1149#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1150 std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1151 << m_computed(firstColm + i-1, firstColm) << " "
1152 << m_computed(firstColm + i, firstColm) << " "
1153 << m_computed(firstColm + i+1, firstColm) << " "
1154 << m_computed(firstColm + i+2, firstColm) << "\n";
1155 std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1156 << m_computed(firstColm + i, firstColm+i) << " "
1157 << m_computed(firstColm + i+1, firstColm+i+1) << " "
1158 << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1159#endif
1160 if (r==Literal(0))
1161 {
1162 m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1163 return;
1164 }
1165 c/=r;
1166 s/=r;
1167 m_computed(firstColm + i, firstColm) = r;
1168 m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1169 m_computed(firstColm + j, firstColm) = Literal(0);
1170
1171 JacobiRotation<RealScalar> J(c,-s);
1172 if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1173 else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1174 if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1175}// end deflation 44
1176
1177
1178// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
1179template <typename MatrixType>
1180void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
1181{
1182 using std::sqrt;
1183 using std::abs;
1184 const Index length = lastCol + 1 - firstCol;
1185
1186 Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1187 Diagonal<MatrixXr> fulldiag(m_computed);
1188 VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1189
1190 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1191 RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1192 RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1193 RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1194
1195#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1196 assert(m_naiveU.allFinite());
1197 assert(m_naiveV.allFinite());
1198 assert(m_computed.allFinite());
1199#endif
1200
1201#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1202 std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1203#endif
1204
1205 //condition 4.1
1206 if (diag(0) < epsilon_coarse)
1207 {
1208#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1209 std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1210#endif
1211 diag(0) = epsilon_coarse;
1212 }
1213
1214 //condition 4.2
1215 for (Index i=1;i<length;++i)
1216 if (abs(col0(i)) < epsilon_strict)
1217 {
1218#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1219 std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1220#endif
1221 col0(i) = Literal(0);
1222 }
1223
1224 //condition 4.3
1225 for (Index i=1;i<length; i++)
1226 if (diag(i) < epsilon_coarse)
1227 {
1228#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1229 std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1230#endif
1231 deflation43(firstCol, shift, i, length);
1232 }
1233
1234#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1235 assert(m_naiveU.allFinite());
1236 assert(m_naiveV.allFinite());
1237 assert(m_computed.allFinite());
1238#endif
1239#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1240 std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1241 std::cout << " : " << col0.transpose() << "\n\n";
1242#endif
1243 {
1244 // Check for total deflation
1245 // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
1246 bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1247
1248 // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
1249 // First, compute the respective permutation.
1250 Index *permutation = m_workspaceI.data();
1251 {
1252 permutation[0] = 0;
1253 Index p = 1;
1254
1255 // Move deflated diagonal entries at the end.
1256 for(Index i=1; i<length; ++i)
1257 if(abs(diag(i))<considerZero)
1258 permutation[p++] = i;
1259
1260 Index i=1, j=k+1;
1261 for( ; p < length; ++p)
1262 {
1263 if (i > k) permutation[p] = j++;
1264 else if (j >= length) permutation[p] = i++;
1265 else if (diag(i) < diag(j)) permutation[p] = j++;
1266 else permutation[p] = i++;
1267 }
1268 }
1269
1270 // If we have a total deflation, then we have to insert diag(0) at the right place
1271 if(total_deflation)
1272 {
1273 for(Index i=1; i<length; ++i)
1274 {
1275 Index pi = permutation[i];
1276 if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1277 permutation[i-1] = permutation[i];
1278 else
1279 {
1280 permutation[i-1] = 0;
1281 break;
1282 }
1283 }
1284 }
1285
1286 // Current index of each col, and current column of each index
1287 Index *realInd = m_workspaceI.data()+length;
1288 Index *realCol = m_workspaceI.data()+2*length;
1289
1290 for(int pos = 0; pos< length; pos++)
1291 {
1292 realCol[pos] = pos;
1293 realInd[pos] = pos;
1294 }
1295
1296 for(Index i = total_deflation?0:1; i < length; i++)
1297 {
1298 const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1299 const Index J = realCol[pi];
1300
1301 using std::swap;
1302 // swap diagonal and first column entries:
1303 swap(diag(i), diag(J));
1304 if(i!=0 && J!=0) swap(col0(i), col0(J));
1305
1306 // change columns
1307 if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1308 else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1309 if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1310
1311 //update real pos
1312 const Index realI = realInd[i];
1313 realCol[realI] = J;
1314 realCol[pi] = i;
1315 realInd[J] = realI;
1316 realInd[i] = pi;
1317 }
1318 }
1319#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1320 std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1321 std::cout << " : " << col0.transpose() << "\n\n";
1322#endif
1323
1324 //condition 4.4
1325 {
1326 Index i = length-1;
1327 while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1328 for(; i>1;--i)
1329 if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1330 {
1331#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1332 std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n";
1333#endif
1334 eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1335 deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1336 }
1337 }
1338
1339#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1340 for(Index j=2;j<length;++j)
1341 assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1342#endif
1343
1344#ifdef EIGEN_BDCSVD_SANITY_CHECKS
1345 assert(m_naiveU.allFinite());
1346 assert(m_naiveV.allFinite());
1347 assert(m_computed.allFinite());
1348#endif
1349}//end deflation
1350
1351/** \svd_module
1352 *
1353 * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
1354 *
1355 * \sa class BDCSVD
1356 */
1357template<typename Derived>
1358BDCSVD<typename MatrixBase<Derived>::PlainObject>
1359MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1360{
1361 return BDCSVD<PlainObject>(*this, computationOptions);
1362}
1363
1364} // end namespace Eigen
1365
1366#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE FixedSegmentReturnType< internal::get_fixed_value< NType >::value >::Type head(NType n)
Definition: BlockMethods.h:1208
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Definition: Macros.h:1304
#define eigen_internal_assert(x)
Definition: Macros.h:1053
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
Definition: Macros.h:1312
class Bidiagonal Divide and Conquer SVD
Definition: BDCSVD.h:74
bool m_isTranspose
Definition: BDCSVD.h:201
Index cols() const
Definition: SVDBase.h:213
Matrix< RealScalar, Dynamic, 1 > VectorType
Definition: BDCSVD.h:103
Base::MatrixVType MatrixVType
Definition: BDCSVD.h:98
NumTraits< typenameMatrixType::Scalar >::Real RealScalar
Definition: BDCSVD.h:85
int m_algoswap
Definition: BDCSVD.h:200
Array< RealScalar, Dynamic, 1 > ArrayXr
Definition: BDCSVD.h:104
BDCSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: BDCSVD.h:140
BDCSVD()
Default Constructor.
Definition: BDCSVD.h:114
BDCSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: BDCSVD.h:124
Index m_nRec
Definition: BDCSVD.h:197
Base::SingularValuesType SingularValuesType
Definition: BDCSVD.h:99
Base::MatrixUType MatrixUType
Definition: BDCSVD.h:97
BDCSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: BDCSVD.h:245
BDCSVD & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: BDCSVD.h:168
bool m_compU
Definition: BDCSVD.h:201
bool m_compV
Definition: BDCSVD.h:201
MatrixXr m_computed
Definition: BDCSVD.h:196
Matrix< RealScalar, Dynamic, Dynamic, ColMajor > MatrixXr
Definition: BDCSVD.h:102
MatrixXr m_naiveU
Definition: BDCSVD.h:195
ArrayXi m_workspaceI
Definition: BDCSVD.h:199
@ MaxColsAtCompileTime
Definition: BDCSVD.h:92
@ DiagSizeAtCompileTime
Definition: BDCSVD.h:90
@ MaxRowsAtCompileTime
Definition: BDCSVD.h:91
@ RowsAtCompileTime
Definition: BDCSVD.h:88
@ MatrixOptions
Definition: BDCSVD.h:94
@ MaxDiagSizeAtCompileTime
Definition: BDCSVD.h:93
@ ColsAtCompileTime
Definition: BDCSVD.h:89
_MatrixType MatrixType
Definition: BDCSVD.h:83
MatrixXr m_naiveV
Definition: BDCSVD.h:195
Array< Index, 1, Dynamic > ArrayXi
Definition: BDCSVD.h:105
void setSwitchSize(int s)
Definition: BDCSVD.h:173
Ref< ArrayXi > IndicesRef
Definition: BDCSVD.h:107
NumTraits< RealScalar >::Literal Literal
Definition: BDCSVD.h:86
MatrixType::Scalar Scalar
Definition: BDCSVD.h:84
Index rows() const
Definition: SVDBase.h:212
~BDCSVD()
Definition: BDCSVD.h:146
Matrix< Scalar, Dynamic, Dynamic, ColMajor > MatrixX
Definition: BDCSVD.h:101
Ref< ArrayXr > ArrayRef
Definition: BDCSVD.h:106
ArrayXr m_workspace
Definition: BDCSVD.h:198
int m_numIters
Definition: BDCSVD.h:216
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:105
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: JacobiSVD.h:490
BDCSVD< PlainObject > bdcSvd(unsigned int computationOptions=0) const
\svd_module
Definition: BDCSVD.h:1359
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Resizes to the given size, and sets all coefficients in this expression to zero.
Definition: CwiseNullaryOp.h:562
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:283
Base class of SVD algorithms.
Definition: SVDBase.h:64
Index cols() const
Definition: SVDBase.h:213
bool m_computeFullV
Definition: SVDBase.h:278
ComputationInfo m_info
Definition: SVDBase.h:275
bool m_computeThinU
Definition: SVDBase.h:277
EIGEN_DEVICE_FUNC ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SVDBase.h:236
bool computeV() const
Definition: SVDBase.h:210
bool m_isInitialized
Definition: SVDBase.h:276
unsigned int m_computationOptions
Definition: SVDBase.h:279
MatrixVType m_matrixV
Definition: SVDBase.h:273
Index m_diagSize
Definition: SVDBase.h:280
bool computeU() const
Definition: SVDBase.h:208
Index m_nonzeroSingularValues
Definition: SVDBase.h:280
Index rows() const
Definition: SVDBase.h:212
SingularValuesType m_singularValues
Definition: SVDBase.h:274
const SingularValuesType & singularValues() const
Definition: SVDBase.h:129
bool m_computeThinV
Definition: SVDBase.h:278
const MatrixUType & matrixU() const
Definition: SVDBase.h:101
bool m_computeFullU
Definition: SVDBase.h:277
const MatrixVType & matrixV() const
Definition: SVDBase.h:117
MatrixUType m_matrixU
Definition: SVDBase.h:272
Index nonzeroSingularValues() const
Definition: SVDBase.h:136
DenseMatrixType toDenseMatrix() const
Definition: BandMatrix.h:145
Definition: UpperBidiagonalization.h:21
const HouseholderUSequenceType householderU() const
Definition: UpperBidiagonalization.h:70
const HouseholderVSequenceType householderV()
Definition: UpperBidiagonalization.h:76
const BidiagonalType & bidiagonal() const
Definition: UpperBidiagonalization.h:68
constexpr auto count() -> size_t
Definition: core.h:1204
static const Eigen::internal::all_t all
Can be used as a parameter to DenseBase::operator()(const RowIndices&, const ColIndices&) to index al...
Definition: IndexedViewHelper.h:171
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
@ Aligned
Definition: Constants.h:240
@ InvalidInput
The inputs are invalid, or the algorithm has been improperly called.
Definition: Constants.h:449
@ Success
Computation was successful.
Definition: Constants.h:442
@ NoConvergence
Iterative procedure did not converge.
Definition: Constants.h:446
@ ComputeFullV
Used in JacobiSVD to indicate that the square matrix V is to be computed.
Definition: Constants.h:397
@ ComputeFullU
Used in JacobiSVD to indicate that the square matrix U is to be computed.
Definition: Constants.h:393
constexpr common_return_t< T1, T2 > hypot(const T1 x, const T2 y) noexcept
Compile-time Pythagorean addition function.
Definition: hypot.hpp:84
constexpr common_t< T1, T2 > max(const T1 x, const T2 y) noexcept
Compile-time pairwise maximum function.
Definition: max.hpp:35
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC bool() isfinite(const T &x)
Definition: MathFunctions.h:1372
EIGEN_STRONG_INLINE void swap(T &a, T &b)
Definition: Meta.h:766
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typenameNumTraits< T >::Real >::type abs(const T &x)
Definition: MathFunctions.h:1509
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
OutputIterator copy(const RangeT &range, OutputIterator out)
Definition: ranges.h:26
Definition: Eigen_Colamd.h:50
void swap(wpi::SmallVectorImpl< T > &LHS, wpi::SmallVectorImpl< T > &RHS)
Implement std::swap in terms of SmallVector swap.
Definition: SmallVector.h:1299
static constexpr const unit_t< PI > pi(1)
Ratio of a circle's circumference to its diameter.
static constexpr const charge::coulomb_t e(1.6021766208e-19)
elementary charge.
static constexpr const velocity::meters_per_second_t c(299792458.0)
Speed of light in vacuum.
b
Definition: data.h:44
static constexpr uint64_t k1
Definition: Hashing.h:171
static constexpr uint64_t k2
Definition: Hashing.h:172
constexpr common_t< T1, T2 > pow(const T1 base, const T2 exp_term) noexcept
Compile-time power function.
Definition: pow.hpp:76
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT
Definition: EigenBase.h:67
T Real
Definition: NumTraits.h:164
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
_MatrixType MatrixType
Definition: BDCSVD.h:44
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96