Package edu.wpi.first.math.controller
Class LinearQuadraticRegulator<States extends Num,Inputs extends Num,Outputs extends Num>
java.lang.Object
edu.wpi.first.math.controller.LinearQuadraticRegulator<States,Inputs,Outputs>
public class LinearQuadraticRegulator<States extends Num,Inputs extends Num,Outputs extends Num> extends Object
Contains the controller coefficients and logic for a linear-quadratic regulator (LQR). LQRs use
the control law u = K(r - x).
For more on the underlying math, read https://file.tavsys.net/control/controls-engineering-in-frc.pdf.
-
Constructor Summary
Constructors Constructor Description LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Matrix<States,States> Q, Matrix<Inputs,Inputs> R, double dtSeconds)
Constructs a controller with the given coefficients and plant.LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Matrix<States,States> Q, Matrix<Inputs,Inputs> R, Matrix<States,Inputs> N, double dtSeconds)
Constructs a controller with the given coefficients and plant.LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Vector<States> qelms, Vector<Inputs> relms, double dtSeconds)
Constructs a controller with the given coefficients and plant.LinearQuadraticRegulator(LinearSystem<States,Inputs,Outputs> plant, Vector<States> qelms, Vector<Inputs> relms, double dtSeconds)
Constructs a controller with the given coefficients and plant. -
Method Summary
Modifier and Type Method Description Matrix<Inputs,N1>
calculate(Matrix<States,N1> x)
Returns the next output of the controller.Matrix<Inputs,N1>
calculate(Matrix<States,N1> x, Matrix<States,N1> nextR)
Returns the next output of the controller.Matrix<Inputs,States>
getK()
Returns the controller matrix K.Matrix<States,N1>
getR()
Returns the reference vector r.double
getR(int row)
Returns an element of the reference vector r.Matrix<Inputs,N1>
getU()
Returns the control input vector u.double
getU(int row)
Returns an element of the control input vector u.void
latencyCompensate(LinearSystem<States,Inputs,Outputs> plant, double dtSeconds, double inputDelaySeconds)
Adjusts LQR controller gain to compensate for a pure time delay in the input.void
reset()
Resets the controller.
-
Constructor Details
-
LinearQuadraticRegulator
public LinearQuadraticRegulator(LinearSystem<States,Inputs,Outputs> plant, Vector<States> qelms, Vector<Inputs> relms, double dtSeconds)Constructs a controller with the given coefficients and plant. Rho is defaulted to 1.- Parameters:
plant
- The plant being controlled.qelms
- The maximum desired error tolerance for each state.relms
- The maximum desired control effort for each input.dtSeconds
- Discretization timestep.- Throws:
IllegalArgumentException
- If the system is uncontrollable.
-
LinearQuadraticRegulator
public LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Vector<States> qelms, Vector<Inputs> relms, double dtSeconds)Constructs a controller with the given coefficients and plant.- Parameters:
A
- Continuous system matrix of the plant being controlled.B
- Continuous input matrix of the plant being controlled.qelms
- The maximum desired error tolerance for each state.relms
- The maximum desired control effort for each input.dtSeconds
- Discretization timestep.- Throws:
IllegalArgumentException
- If the system is uncontrollable.
-
LinearQuadraticRegulator
public LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Matrix<States,States> Q, Matrix<Inputs,Inputs> R, double dtSeconds)Constructs a controller with the given coefficients and plant.- Parameters:
A
- Continuous system matrix of the plant being controlled.B
- Continuous input matrix of the plant being controlled.Q
- The state cost matrix.R
- The input cost matrix.dtSeconds
- Discretization timestep.- Throws:
IllegalArgumentException
- If the system is uncontrollable.
-
LinearQuadraticRegulator
public LinearQuadraticRegulator(Matrix<States,States> A, Matrix<States,Inputs> B, Matrix<States,States> Q, Matrix<Inputs,Inputs> R, Matrix<States,Inputs> N, double dtSeconds)Constructs a controller with the given coefficients and plant.- Parameters:
A
- Continuous system matrix of the plant being controlled.B
- Continuous input matrix of the plant being controlled.Q
- The state cost matrix.R
- The input cost matrix.N
- The state-input cross-term cost matrix.dtSeconds
- Discretization timestep.- Throws:
IllegalArgumentException
- If the system is uncontrollable.
-
-
Method Details
-
getU
Returns the control input vector u.- Returns:
- The control input.
-
getU
Returns an element of the control input vector u.- Parameters:
row
- Row of u.- Returns:
- The row of the control input vector.
-
getR
Returns the reference vector r.- Returns:
- The reference vector.
-
getR
Returns an element of the reference vector r.- Parameters:
row
- Row of r.- Returns:
- The row of the reference vector.
-
getK
Returns the controller matrix K.- Returns:
- the controller matrix K.
-
reset
Resets the controller. -
calculate
Returns the next output of the controller.- Parameters:
x
- The current state x.- Returns:
- The next controller output.
-
calculate
Returns the next output of the controller.- Parameters:
x
- The current state x.nextR
- the next reference vector r.- Returns:
- The next controller output.
-
latencyCompensate
public void latencyCompensate(LinearSystem<States,Inputs,Outputs> plant, double dtSeconds, double inputDelaySeconds)Adjusts LQR controller gain to compensate for a pure time delay in the input.Linear-Quadratic regulator controller gains tend to be aggressive. If sensor measurements are time-delayed too long, the LQR may be unstable. However, if we know the amount of delay, we can compute the control based on where the system will be after the time delay.
See https://file.tavsys.net/control/controls-engineering-in-frc.pdf appendix C.4 for a derivation.
- Parameters:
plant
- The plant being controlled.dtSeconds
- Discretization timestep in seconds.inputDelaySeconds
- Input time delay in seconds.
-