001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.controller; 006 007import edu.wpi.first.math.Drake; 008import edu.wpi.first.math.MathSharedStore; 009import edu.wpi.first.math.Matrix; 010import edu.wpi.first.math.Num; 011import edu.wpi.first.math.StateSpaceUtil; 012import edu.wpi.first.math.Vector; 013import edu.wpi.first.math.numbers.N1; 014import edu.wpi.first.math.system.Discretization; 015import edu.wpi.first.math.system.LinearSystem; 016import org.ejml.simple.SimpleMatrix; 017 018/** 019 * Contains the controller coefficients and logic for a linear-quadratic regulator (LQR). LQRs use 020 * the control law u = K(r - x). 021 * 022 * <p>For more on the underlying math, read 023 * https://file.tavsys.net/control/controls-engineering-in-frc.pdf. 024 */ 025public class LinearQuadraticRegulator<States extends Num, Inputs extends Num, Outputs extends Num> { 026 /** The current reference state. */ 027 private Matrix<States, N1> m_r; 028 029 /** The computed and capped controller output. */ 030 private Matrix<Inputs, N1> m_u; 031 032 // Controller gain. 033 private Matrix<Inputs, States> m_K; 034 035 /** 036 * Constructs a controller with the given coefficients and plant. Rho is defaulted to 1. 037 * 038 * @param plant The plant being controlled. 039 * @param qelms The maximum desired error tolerance for each state. 040 * @param relms The maximum desired control effort for each input. 041 * @param dtSeconds Discretization timestep. 042 * @throws IllegalArgumentException If the system is uncontrollable. 043 */ 044 public LinearQuadraticRegulator( 045 LinearSystem<States, Inputs, Outputs> plant, 046 Vector<States> qelms, 047 Vector<Inputs> relms, 048 double dtSeconds) { 049 this( 050 plant.getA(), 051 plant.getB(), 052 StateSpaceUtil.makeCostMatrix(qelms), 053 StateSpaceUtil.makeCostMatrix(relms), 054 dtSeconds); 055 } 056 057 /** 058 * Constructs a controller with the given coefficients and plant. 059 * 060 * @param A Continuous system matrix of the plant being controlled. 061 * @param B Continuous input matrix of the plant being controlled. 062 * @param qelms The maximum desired error tolerance for each state. 063 * @param relms The maximum desired control effort for each input. 064 * @param dtSeconds Discretization timestep. 065 * @throws IllegalArgumentException If the system is uncontrollable. 066 */ 067 public LinearQuadraticRegulator( 068 Matrix<States, States> A, 069 Matrix<States, Inputs> B, 070 Vector<States> qelms, 071 Vector<Inputs> relms, 072 double dtSeconds) { 073 this( 074 A, 075 B, 076 StateSpaceUtil.makeCostMatrix(qelms), 077 StateSpaceUtil.makeCostMatrix(relms), 078 dtSeconds); 079 } 080 081 /** 082 * Constructs a controller with the given coefficients and plant. 083 * 084 * @param A Continuous system matrix of the plant being controlled. 085 * @param B Continuous input matrix of the plant being controlled. 086 * @param Q The state cost matrix. 087 * @param R The input cost matrix. 088 * @param dtSeconds Discretization timestep. 089 * @throws IllegalArgumentException If the system is uncontrollable. 090 */ 091 public LinearQuadraticRegulator( 092 Matrix<States, States> A, 093 Matrix<States, Inputs> B, 094 Matrix<States, States> Q, 095 Matrix<Inputs, Inputs> R, 096 double dtSeconds) { 097 var discABPair = Discretization.discretizeAB(A, B, dtSeconds); 098 var discA = discABPair.getFirst(); 099 var discB = discABPair.getSecond(); 100 101 if (!StateSpaceUtil.isStabilizable(discA, discB)) { 102 var builder = new StringBuilder("The system passed to the LQR is uncontrollable!\n\nA =\n"); 103 builder 104 .append(discA.getStorage().toString()) 105 .append("\nB =\n") 106 .append(discB.getStorage().toString()) 107 .append('\n'); 108 109 var msg = builder.toString(); 110 MathSharedStore.reportError(msg, Thread.currentThread().getStackTrace()); 111 throw new IllegalArgumentException(msg); 112 } 113 114 var S = Drake.discreteAlgebraicRiccatiEquation(discA, discB, Q, R); 115 116 // K = (BᵀSB + R)⁻¹BᵀSA 117 m_K = 118 discB 119 .transpose() 120 .times(S) 121 .times(discB) 122 .plus(R) 123 .solve(discB.transpose().times(S).times(discA)); 124 125 m_r = new Matrix<>(new SimpleMatrix(B.getNumRows(), 1)); 126 m_u = new Matrix<>(new SimpleMatrix(B.getNumCols(), 1)); 127 128 reset(); 129 } 130 131 /** 132 * Constructs a controller with the given coefficients and plant. 133 * 134 * @param A Continuous system matrix of the plant being controlled. 135 * @param B Continuous input matrix of the plant being controlled. 136 * @param Q The state cost matrix. 137 * @param R The input cost matrix. 138 * @param N The state-input cross-term cost matrix. 139 * @param dtSeconds Discretization timestep. 140 * @throws IllegalArgumentException If the system is uncontrollable. 141 */ 142 public LinearQuadraticRegulator( 143 Matrix<States, States> A, 144 Matrix<States, Inputs> B, 145 Matrix<States, States> Q, 146 Matrix<Inputs, Inputs> R, 147 Matrix<States, Inputs> N, 148 double dtSeconds) { 149 var discABPair = Discretization.discretizeAB(A, B, dtSeconds); 150 var discA = discABPair.getFirst(); 151 var discB = discABPair.getSecond(); 152 153 var S = Drake.discreteAlgebraicRiccatiEquation(discA, discB, Q, R, N); 154 155 // K = (BᵀSB + R)⁻¹(BᵀSA + Nᵀ) 156 m_K = 157 discB 158 .transpose() 159 .times(S) 160 .times(discB) 161 .plus(R) 162 .solve(discB.transpose().times(S).times(discA).plus(N.transpose())); 163 164 m_r = new Matrix<>(new SimpleMatrix(B.getNumRows(), 1)); 165 m_u = new Matrix<>(new SimpleMatrix(B.getNumCols(), 1)); 166 167 reset(); 168 } 169 170 /** 171 * Returns the control input vector u. 172 * 173 * @return The control input. 174 */ 175 public Matrix<Inputs, N1> getU() { 176 return m_u; 177 } 178 179 /** 180 * Returns an element of the control input vector u. 181 * 182 * @param row Row of u. 183 * @return The row of the control input vector. 184 */ 185 public double getU(int row) { 186 return m_u.get(row, 0); 187 } 188 189 /** 190 * Returns the reference vector r. 191 * 192 * @return The reference vector. 193 */ 194 public Matrix<States, N1> getR() { 195 return m_r; 196 } 197 198 /** 199 * Returns an element of the reference vector r. 200 * 201 * @param row Row of r. 202 * @return The row of the reference vector. 203 */ 204 public double getR(int row) { 205 return m_r.get(row, 0); 206 } 207 208 /** 209 * Returns the controller matrix K. 210 * 211 * @return the controller matrix K. 212 */ 213 public Matrix<Inputs, States> getK() { 214 return m_K; 215 } 216 217 /** Resets the controller. */ 218 public void reset() { 219 m_r.fill(0.0); 220 m_u.fill(0.0); 221 } 222 223 /** 224 * Returns the next output of the controller. 225 * 226 * @param x The current state x. 227 * @return The next controller output. 228 */ 229 public Matrix<Inputs, N1> calculate(Matrix<States, N1> x) { 230 m_u = m_K.times(m_r.minus(x)); 231 return m_u; 232 } 233 234 /** 235 * Returns the next output of the controller. 236 * 237 * @param x The current state x. 238 * @param nextR the next reference vector r. 239 * @return The next controller output. 240 */ 241 public Matrix<Inputs, N1> calculate(Matrix<States, N1> x, Matrix<States, N1> nextR) { 242 m_r = nextR; 243 return calculate(x); 244 } 245 246 /** 247 * Adjusts LQR controller gain to compensate for a pure time delay in the input. 248 * 249 * <p>Linear-Quadratic regulator controller gains tend to be aggressive. If sensor measurements 250 * are time-delayed too long, the LQR may be unstable. However, if we know the amount of delay, we 251 * can compute the control based on where the system will be after the time delay. 252 * 253 * <p>See https://file.tavsys.net/control/controls-engineering-in-frc.pdf appendix C.4 for a 254 * derivation. 255 * 256 * @param plant The plant being controlled. 257 * @param dtSeconds Discretization timestep in seconds. 258 * @param inputDelaySeconds Input time delay in seconds. 259 */ 260 public void latencyCompensate( 261 LinearSystem<States, Inputs, Outputs> plant, double dtSeconds, double inputDelaySeconds) { 262 var discABPair = Discretization.discretizeAB(plant.getA(), plant.getB(), dtSeconds); 263 var discA = discABPair.getFirst(); 264 var discB = discABPair.getSecond(); 265 266 m_K = m_K.times((discA.minus(discB.times(m_K))).pow(inputDelaySeconds / dtSeconds)); 267 } 268}