WPILibC++ 2023.4.3
SVDBase.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
8// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
9// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
10// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
11//
12// This Source Code Form is subject to the terms of the Mozilla
13// Public License v. 2.0. If a copy of the MPL was not distributed
14// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
15
16#ifndef EIGEN_SVDBASE_H
17#define EIGEN_SVDBASE_H
18
19namespace Eigen {
20
21namespace internal {
22template<typename Derived> struct traits<SVDBase<Derived> >
23 : traits<Derived>
24{
27 typedef int StorageIndex;
28 enum { Flags = 0 };
29};
30}
31
32/** \ingroup SVD_Module
33 *
34 *
35 * \class SVDBase
36 *
37 * \brief Base class of SVD algorithms
38 *
39 * \tparam Derived the type of the actual SVD decomposition
40 *
41 * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
42 * \f[ A = U S V^* \f]
43 * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
44 * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
45 * and right \em singular \em vectors of \a A respectively.
46 *
47 * Singular values are always sorted in decreasing order.
48 *
49 *
50 * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
51 * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
52 * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
53 * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
54 *
55 * The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
56 * considered well defined.
57 *
58 * If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
59 * terminate in finite (and reasonable) time.
60 * \sa class BDCSVD, class JacobiSVD
61 */
62template<typename Derived> class SVDBase
63 : public SolverBase<SVDBase<Derived> >
64{
65public:
66
67 template<typename Derived_>
69
71 typedef typename MatrixType::Scalar Scalar;
74 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
75 enum {
76 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
77 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
79 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
80 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
82 MatrixOptions = MatrixType::Options
83 };
84
88
89 Derived& derived() { return *static_cast<Derived*>(this); }
90 const Derived& derived() const { return *static_cast<const Derived*>(this); }
91
92 /** \returns the \a U matrix.
93 *
94 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
95 * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
96 *
97 * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
98 *
99 * This method asserts that you asked for \a U to be computed.
100 */
101 const MatrixUType& matrixU() const
102 {
104 eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
105 return m_matrixU;
106 }
107
108 /** \returns the \a V matrix.
109 *
110 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
111 * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
112 *
113 * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
114 *
115 * This method asserts that you asked for \a V to be computed.
116 */
117 const MatrixVType& matrixV() const
118 {
120 eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
121 return m_matrixV;
122 }
123
124 /** \returns the vector of singular values.
125 *
126 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
127 * returned vector has size \a m. Singular values are always sorted in decreasing order.
128 */
130 {
132 return m_singularValues;
133 }
134
135 /** \returns the number of singular values that are not exactly 0 */
137 {
140 }
141
142 /** \returns the rank of the matrix of which \c *this is the SVD.
143 *
144 * \note This method has to determine which singular values should be considered nonzero.
145 * For that, it uses the threshold value that you can control by calling
146 * setThreshold(const RealScalar&).
147 */
148 inline Index rank() const
149 {
150 using std::abs;
152 if(m_singularValues.size()==0) return 0;
153 RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
155 while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
156 return i+1;
157 }
158
159 /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
160 * which need to determine when singular values are to be considered nonzero.
161 * This is not used for the SVD decomposition itself.
162 *
163 * When it needs to get the threshold value, Eigen calls threshold().
164 * The default is \c NumTraits<Scalar>::epsilon()
165 *
166 * \param threshold The new value to use as the threshold.
167 *
168 * A singular value will be considered nonzero if its value is strictly greater than
169 * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
170 *
171 * If you want to come back to the default behavior, call setThreshold(Default_t)
172 */
174 {
177 return derived();
178 }
179
180 /** Allows to come back to the default behavior, letting Eigen use its default formula for
181 * determining the threshold.
182 *
183 * You should pass the special object Eigen::Default as parameter here.
184 * \code svd.setThreshold(Eigen::Default); \endcode
185 *
186 * See the documentation of setThreshold(const RealScalar&).
187 */
189 {
191 return derived();
192 }
193
194 /** Returns the threshold that will be used by certain methods such as rank().
195 *
196 * See the documentation of setThreshold(const RealScalar&).
197 */
199 {
201 // this temporary is needed to workaround a MSVC issue
202 Index diagSize = (std::max<Index>)(1,m_diagSize);
205 }
206
207 /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
208 inline bool computeU() const { return m_computeFullU || m_computeThinU; }
209 /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
210 inline bool computeV() const { return m_computeFullV || m_computeThinV; }
211
212 inline Index rows() const { return m_rows; }
213 inline Index cols() const { return m_cols; }
214
215 #ifdef EIGEN_PARSED_BY_DOXYGEN
216 /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
217 *
218 * \param b the right-hand-side of the equation to solve.
219 *
220 * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
221 *
222 * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
223 * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
224 */
225 template<typename Rhs>
226 inline const Solve<Derived, Rhs>
227 solve(const MatrixBase<Rhs>& b) const;
228 #endif
229
230
231 /** \brief Reports whether previous computation was successful.
232 *
233 * \returns \c Success if computation was successful.
234 */
237 {
238 eigen_assert(m_isInitialized && "SVD is not initialized.");
239 return m_info;
240 }
241
242 #ifndef EIGEN_PARSED_BY_DOXYGEN
243 template<typename RhsType, typename DstType>
244 void _solve_impl(const RhsType &rhs, DstType &dst) const;
245
246 template<bool Conjugate, typename RhsType, typename DstType>
247 void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
248 #endif
249
250protected:
251
253 {
255 }
256
258 eigen_assert(m_isInitialized && "SVD is not initialized.");
259 }
260
261 template<bool Transpose_, typename Rhs>
262 void _check_solve_assertion(const Rhs& b) const {
265 eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
266 eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
267 }
268
269 // return true if already allocated
270 bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
271
282
283 /** \brief Default Constructor.
284 *
285 * Default constructor of SVDBase
286 */
288 : m_info(Success),
289 m_isInitialized(false),
290 m_isAllocated(false),
292 m_computeFullU(false),
293 m_computeThinU(false),
294 m_computeFullV(false),
295 m_computeThinV(false),
297 m_rows(-1), m_cols(-1), m_diagSize(0)
298 {
300 }
301
302
303};
304
305#ifndef EIGEN_PARSED_BY_DOXYGEN
306template<typename Derived>
307template<typename RhsType, typename DstType>
308void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
309{
310 // A = U S V^*
311 // So A^{-1} = V S^{-1} U^*
312
314 Index l_rank = rank();
315 tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
316 tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
317 dst = m_matrixV.leftCols(l_rank) * tmp;
318}
319
320template<typename Derived>
321template<bool Conjugate, typename RhsType, typename DstType>
322void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
323{
324 // A = U S V^*
325 // So A^{-*} = U S^{-1} V^*
326 // And A^{-T} = U_conj S^{-1} V^T
328 Index l_rank = rank();
329
330 tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs;
331 tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
332 dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp;
333}
334#endif
335
336template<typename MatrixType>
337bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
338{
339 eigen_assert(rows >= 0 && cols >= 0);
340
341 if (m_isAllocated &&
342 rows == m_rows &&
343 cols == m_cols &&
344 computationOptions == m_computationOptions)
345 {
346 return true;
347 }
348
349 m_rows = rows;
350 m_cols = cols;
351 m_info = Success;
352 m_isInitialized = false;
353 m_isAllocated = true;
354 m_computationOptions = computationOptions;
355 m_computeFullU = (computationOptions & ComputeFullU) != 0;
356 m_computeThinU = (computationOptions & ComputeThinU) != 0;
357 m_computeFullV = (computationOptions & ComputeFullV) != 0;
358 m_computeThinV = (computationOptions & ComputeThinV) != 0;
359 eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
360 eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
361 eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
362 "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
363
364 m_diagSize = (std::min)(m_rows, m_cols);
365 m_singularValues.resize(m_diagSize);
366 if(RowsAtCompileTime==Dynamic)
367 m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
368 if(ColsAtCompileTime==Dynamic)
369 m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
370
371 return false;
372}
373
374}// end namespace
375
376#endif // EIGEN_SVDBASE_H
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Definition: Macros.h:1304
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_ONLY_USED_FOR_DEBUG(x)
Definition: Macros.h:1059
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_IMPLIES(a, b)
Definition: Macros.h:1325
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
Definition: Macros.h:1312
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
Definition: StaticAssert.h:187
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
Base class of SVD algorithms.
Definition: SVDBase.h:64
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const
Definition: SVDBase.h:322
void _check_solve_assertion(const Rhs &b) const
Definition: SVDBase.h:262
Index cols() const
Definition: SVDBase.h:213
Derived & setThreshold(const RealScalar &threshold)
Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),...
Definition: SVDBase.h:173
internal::plain_diag_type< MatrixType, RealScalar >::type SingularValuesType
Definition: SVDBase.h:87
bool m_usePrescribedThreshold
Definition: SVDBase.h:276
bool m_computeFullV
Definition: SVDBase.h:278
Index rank() const
Definition: SVDBase.h:148
NumTraits< typenameMatrixType::Scalar >::Real RealScalar
Definition: SVDBase.h:72
ComputationInfo m_info
Definition: SVDBase.h:275
bool m_computeThinU
Definition: SVDBase.h:277
Derived & derived()
Definition: SVDBase.h:89
EIGEN_DEVICE_FUNC ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SVDBase.h:236
bool computeV() const
Definition: SVDBase.h:210
Eigen::Index Index
Definition: SVDBase.h:74
bool m_isInitialized
Definition: SVDBase.h:276
Index m_cols
Definition: SVDBase.h:280
unsigned int m_computationOptions
Definition: SVDBase.h:279
MatrixVType m_matrixV
Definition: SVDBase.h:273
Index m_diagSize
Definition: SVDBase.h:280
bool computeU() const
Definition: SVDBase.h:208
bool allocate(Index rows, Index cols, unsigned int computationOptions)
Definition: SVDBase.h:337
Derived & setThreshold(Default_t)
Allows to come back to the default behavior, letting Eigen use its default formula for determining th...
Definition: SVDBase.h:188
RealScalar threshold() const
Returns the threshold that will be used by certain methods such as rank().
Definition: SVDBase.h:198
MatrixType::Scalar Scalar
Definition: SVDBase.h:71
Index m_rows
Definition: SVDBase.h:280
@ MatrixOptions
Definition: SVDBase.h:82
@ ColsAtCompileTime
Definition: SVDBase.h:77
@ DiagSizeAtCompileTime
Definition: SVDBase.h:78
@ MaxRowsAtCompileTime
Definition: SVDBase.h:79
@ MaxDiagSizeAtCompileTime
Definition: SVDBase.h:81
@ MaxColsAtCompileTime
Definition: SVDBase.h:80
@ RowsAtCompileTime
Definition: SVDBase.h:76
Index m_nonzeroSingularValues
Definition: SVDBase.h:280
Index rows() const
Definition: SVDBase.h:212
Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime > MatrixUType
Definition: SVDBase.h:85
SingularValuesType m_singularValues
Definition: SVDBase.h:274
const Derived & derived() const
Definition: SVDBase.h:90
RealScalar m_prescribedThreshold
Definition: SVDBase.h:281
SVDBase()
Default Constructor.
Definition: SVDBase.h:287
void _solve_impl(const RhsType &rhs, DstType &dst) const
Definition: SVDBase.h:308
const SingularValuesType & singularValues() const
Definition: SVDBase.h:129
bool m_computeThinV
Definition: SVDBase.h:278
const MatrixUType & matrixU() const
Definition: SVDBase.h:101
bool m_computeFullU
Definition: SVDBase.h:277
Eigen::internal::traits< SVDBase >::StorageIndex StorageIndex
Definition: SVDBase.h:73
static void check_template_parameters()
Definition: SVDBase.h:252
internal::traits< Derived >::MatrixType MatrixType
Definition: SVDBase.h:70
const MatrixVType & matrixV() const
Definition: SVDBase.h:117
MatrixUType m_matrixU
Definition: SVDBase.h:272
Matrix< Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime > MatrixVType
Definition: SVDBase.h:86
void _check_compute_assertions() const
Definition: SVDBase.h:257
bool m_isAllocated
Definition: SVDBase.h:276
Index nonzeroSingularValues() const
Definition: SVDBase.h:136
Pseudo expression representing a solving operation.
Definition: Solve.h:63
A base class for matrix decomposition and solvers.
Definition: SolverBase.h:69
const Solve< SVDBase< Derived >, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: SolverBase.h:106
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:440
@ Success
Computation was successful.
Definition: Constants.h:442
@ ComputeFullV
Used in JacobiSVD to indicate that the square matrix V is to be computed.
Definition: Constants.h:397
@ ComputeThinV
Used in JacobiSVD to indicate that the thin matrix V is to be computed.
Definition: Constants.h:399
@ ComputeFullU
Used in JacobiSVD to indicate that the square matrix U is to be computed.
Definition: Constants.h:393
@ ComputeThinU
Used in JacobiSVD to indicate that the thin matrix U is to be computed.
Definition: Constants.h:395
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Default_t
Definition: Constants.h:362
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
b
Definition: data.h:44
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
T Real
Definition: NumTraits.h:164
The type used to identify a matrix expression.
Definition: Constants.h:522
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
The type used to identify a general solver (factored) storage.
Definition: Constants.h:513
Definition: SolverBase.h:18
SolverStorage StorageKind
Definition: SVDBase.h:26
MatrixXpr XprKind
Definition: SVDBase.h:25
int StorageIndex
Definition: SVDBase.h:27
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96