# Class Drake

java.lang.Object
edu.wpi.first.math.Drake

public final class Drake
extends Object
• ## Method Details

• ### discreteAlgebraicRiccatiEquation

public static org.ejml.simple.SimpleMatrix discreteAlgebraicRiccatiEquation​(org.ejml.simple.SimpleMatrix A, org.ejml.simple.SimpleMatrix B, org.ejml.simple.SimpleMatrix Q, org.ejml.simple.SimpleMatrix R)
Solves the discrete algebraic Riccati equation.
Parameters:
A - System matrix.
B - Input matrix.
Q - State cost matrix.
R - Input cost matrix.
Returns:
Solution of DARE.
• ### discreteAlgebraicRiccatiEquation

public static <States extends Num,​ Inputs extends Num> Matrix<States,​States> discreteAlgebraicRiccatiEquation​(Matrix<States,​States> A, Matrix<States,​Inputs> B, Matrix<States,​States> Q, Matrix<Inputs,​Inputs> R)
Solves the discrete algebraic Riccati equation.
Type Parameters:
States - Number of states.
Inputs - Number of inputs.
Parameters:
A - System matrix.
B - Input matrix.
Q - State cost matrix.
R - Input cost matrix.
Returns:
Solution of DARE.
• ### discreteAlgebraicRiccatiEquation

public static org.ejml.simple.SimpleMatrix discreteAlgebraicRiccatiEquation​(org.ejml.simple.SimpleMatrix A, org.ejml.simple.SimpleMatrix B, org.ejml.simple.SimpleMatrix Q, org.ejml.simple.SimpleMatrix R, org.ejml.simple.SimpleMatrix N)
Solves the discrete algebraic Riccati equation.
Parameters:
A - System matrix.
B - Input matrix.
Q - State cost matrix.
R - Input cost matrix.
N - State-input cross-term cost matrix.
Returns:
Solution of DARE.
• ### discreteAlgebraicRiccatiEquation

public static <States extends Num,​ Inputs extends Num> Matrix<States,​States> discreteAlgebraicRiccatiEquation​(Matrix<States,​States> A, Matrix<States,​Inputs> B, Matrix<States,​States> Q, Matrix<Inputs,​Inputs> R, Matrix<States,​Inputs> N)
Solves the discrete algebraic Riccati equation.
Type Parameters:
States - Number of states.
Inputs - Number of inputs.
Parameters:
A - System matrix.
B - Input matrix.
Q - State cost matrix.
R - Input cost matrix.
N - State-input cross-term cost matrix.
Returns:
Solution of DARE.