WPILibC++ 2023.4.3
GlobalFunctions.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_GLOBAL_FUNCTIONS_H
12#define EIGEN_GLOBAL_FUNCTIONS_H
13
14#ifdef EIGEN_PARSED_BY_DOXYGEN
15
16#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
17 /** \returns an expression of the coefficient-wise DOC_OP of \a x
18
19 DOC_DETAILS
20
21 \sa <a href="group__CoeffwiseMathFunctions.html#cwisetable_##NAME">Math functions</a>, class CwiseUnaryOp
22 */ \
23 template<typename Derived> \
24 inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
25 NAME(const Eigen::ArrayBase<Derived>& x);
26
27#else
28
29#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
30 template<typename Derived> \
31 inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
32 (NAME)(const Eigen::ArrayBase<Derived>& x) { \
33 return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \
34 }
35
36#endif // EIGEN_PARSED_BY_DOXYGEN
37
38#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
39 \
40 template<typename Derived> \
41 struct NAME##_retval<ArrayBase<Derived> > \
42 { \
43 typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
44 }; \
45 template<typename Derived> \
46 struct NAME##_impl<ArrayBase<Derived> > \
47 { \
48 static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
49 { \
50 return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \
51 } \
52 };
53
54namespace Eigen
55{
57 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag)
58 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate)
62 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan)
63 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan)
64 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin)
65 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos)
66 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh)
67 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh)
68 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh)
69#if EIGEN_HAS_CXX11_MATH
70 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asinh,scalar_asinh_op,inverse hyperbolic sine,\sa ArrayBase::asinh)
71 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acosh,scalar_acosh_op,inverse hyperbolic cosine,\sa ArrayBase::acosh)
72 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atanh,scalar_atanh_op,inverse hyperbolic tangent,\sa ArrayBase::atanh)
73#endif
75 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma)
78 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc)
79 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ndtri,scalar_ndtri_op,inverse normal distribution function,\sa ArrayBase::ndtri)
80 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp)
81 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(expm1,scalar_expm1_op,exponential of a value minus 1,\sa ArrayBase::expm1)
82 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log)
83 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p)
84 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log10)
85 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log2,scalar_log2_op,base 2 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log2)
88 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg DOXCOMMA MatrixBase::cwiseArg)
90 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rsqrt,scalar_rsqrt_op,reciprocal square root,\sa ArrayBase::rsqrt)
91 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square)
92 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube)
93 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rint,scalar_rint_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round)
94 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round)
95 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor)
96 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil)
97 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan)
98 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf)
99 EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite)
101
102 /** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent.
103 *
104 * \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar).
105 *
106 * \sa ArrayBase::pow()
107 *
108 * \relates ArrayBase
109 */
110#ifdef EIGEN_PARSED_BY_DOXYGEN
111 template<typename Derived,typename ScalarExponent>
112 inline const CwiseBinaryOp<internal::scalar_pow_op<Derived::Scalar,ScalarExponent>,Derived,Constant<ScalarExponent> >
113 pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent);
114#else
115 template <typename Derived,typename ScalarExponent>
116 EIGEN_DEVICE_FUNC inline
118 const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename internal::promote_scalar_arg<typename Derived::Scalar
119 EIGEN_COMMA ScalarExponent EIGEN_COMMA
120 EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent)>::type,pow))
121 pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent)
122 {
123 typedef typename internal::promote_scalar_arg<typename Derived::Scalar,ScalarExponent,
124 EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent)>::type PromotedExponent;
125 return EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,PromotedExponent,pow)(x.derived(),
127 }
128#endif
129
130 /** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents.
131 *
132 * This function computes the coefficient-wise power.
133 *
134 * Example: \include Cwise_array_power_array.cpp
135 * Output: \verbinclude Cwise_array_power_array.out
136 *
137 * \sa ArrayBase::pow()
138 *
139 * \relates ArrayBase
140 */
141 template<typename Derived,typename ExponentDerived>
144 {
146 x.derived(),
147 exponents.derived()
148 );
149 }
150
151 /** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents.
152 *
153 * This function computes the coefficient-wise power between a scalar and an array of exponents.
154 *
155 * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar).
156 *
157 * Example: \include Cwise_scalar_power_array.cpp
158 * Output: \verbinclude Cwise_scalar_power_array.out
159 *
160 * \sa ArrayBase::pow()
161 *
162 * \relates ArrayBase
163 */
164#ifdef EIGEN_PARSED_BY_DOXYGEN
165 template<typename Scalar,typename Derived>
166 inline const CwiseBinaryOp<internal::scalar_pow_op<Scalar,Derived::Scalar>,Constant<Scalar>,Derived>
167 pow(const Scalar& x,const Eigen::ArrayBase<Derived>& x);
168#else
169 template <typename Scalar, typename Derived>
170 EIGEN_DEVICE_FUNC inline
172 const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename internal::promote_scalar_arg<typename Derived::Scalar
174 EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type,Derived,pow))
175 pow(const Scalar& x, const Eigen::ArrayBase<Derived>& exponents) {
176 typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
177 EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar;
178 return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(PromotedScalar,Derived,pow)(
180 }
181#endif
182
183
184 namespace internal
185 {
189 }
190}
191
192// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
193
194#endif // EIGEN_GLOBAL_FUNCTIONS_H
EIGEN_DEVICE_FUNC const LgammaReturnType lgamma() const
\cpp11
Definition: ArrayCwiseUnaryOps.h:620
EIGEN_DEVICE_FUNC const NdtriReturnType ndtri() const
Definition: ArrayCwiseUnaryOps.h:693
EIGEN_DEVICE_FUNC const SignReturnType sign() const
Definition: ArrayCwiseUnaryOps.h:219
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArgReturnType arg() const
Definition: ArrayCwiseUnaryOps.h:66
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Abs2ReturnType abs2() const
Definition: ArrayCwiseUnaryOps.h:80
EIGEN_DEVICE_FUNC const DigammaReturnType digamma() const
Definition: ArrayCwiseUnaryOps.h:637
EIGEN_DEVICE_FUNC const LogisticReturnType logistic() const
Definition: ArrayCwiseUnaryOps.h:397
EIGEN_DEVICE_FUNC const ErfcReturnType erfc() const
\cpp11
Definition: ArrayCwiseUnaryOps.h:673
EIGEN_DEVICE_FUNC const SquareReturnType square() const
Definition: ArrayCwiseUnaryOps.h:425
EIGEN_DEVICE_FUNC const ErfReturnType erf() const
\cpp11
Definition: ArrayCwiseUnaryOps.h:655
EIGEN_DEVICE_FUNC const InverseReturnType inverse() const
Definition: ArrayCwiseUnaryOps.h:411
EIGEN_DEVICE_FUNC const RintReturnType rint() const
Definition: ArrayCwiseUnaryOps.h:453
EIGEN_DEVICE_FUNC const RsqrtReturnType rsqrt() const
Definition: ArrayCwiseUnaryOps.h:203
EIGEN_DEVICE_FUNC const CubeReturnType cube() const
Definition: ArrayCwiseUnaryOps.h:439
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
EIGEN_DEVICE_FUNC const ImagReturnType imag() const
Definition: CommonCwiseUnaryOps.h:109
EIGEN_DEVICE_FUNC ConjugateReturnType conjugate() const
Definition: CommonCwiseUnaryOps.h:74
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME, FUNCTOR)
Definition: GlobalFunctions.h:38
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME, FUNCTOR, DOC_OP, DOC_DETAILS)
Definition: GlobalFunctions.h:29
#define EIGEN_SCALAR_BINARY_SUPPORTED(OPNAME, TYPEA, TYPEB)
Definition: Macros.h:1354
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(EXPR, SCALAR, OPNAME)
Definition: Macros.h:1357
#define EIGEN_COMMA
Definition: Macros.h:914
#define EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(SCALAR, EXPR, OPNAME)
Definition: Macros.h:1361
EIGEN_DEVICE_FUNC const CwiseSqrtReturnType cwiseSqrt() const
Definition: MatrixCwiseUnaryOps.h:59
EIGEN_DEVICE_FUNC const CwiseArgReturnType cwiseArg() const
Definition: MatrixCwiseUnaryOps.h:95
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseAbs2ReturnType cwiseAbs2() const
Definition: MatrixCwiseUnaryOps.h:46
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseAbsReturnType cwiseAbs() const
Definition: MatrixCwiseUnaryOps.h:33
or
Definition: ThirdPartyNotices.txt:199
and restrictions which apply to each piece of software is included later in this file and or inside of the individual applicable source files The disclaimer of warranty in the WPILib license above applies to all code in and nothing in any of the other licenses gives permission to use the names of FIRST nor the names of the WPILib contributors to endorse or promote products derived from this software The following pieces of software have additional or alternate and or Google Inc All rights reserved Redistribution and use in source and binary with or without are permitted provided that the following conditions are this list of conditions and the following disclaimer *Redistributions in binary form must reproduce the above copyright this list of conditions and the following disclaimer in the documentation and or other materials provided with the distribution *Neither the name of Google Inc nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED BUT NOT LIMITED THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY OR CONSEQUENTIAL WHETHER IN STRICT OR EVEN IF ADVISED OF THE POSSIBILITY OF SUCH January AND DISTRIBUTION Definitions License shall mean the terms and conditions for and distribution as defined by Sections through of this document Licensor shall mean the copyright owner or entity authorized by the copyright owner that is granting the License Legal Entity shall mean the union of the acting entity and all other entities that control are controlled by or are under common control with that entity For the purposes of this definition control direct or to cause the direction or management of such whether by contract or including but not limited to software source documentation and configuration files Object form shall mean any form resulting from mechanical transformation or translation of a Source including but not limited to compiled object generated and conversions to other media types Work shall mean the work of whether in Source or Object made available under the as indicated by a copyright notice that is included in or attached to the whether in Source or Object that is based or other modifications as a an original work of authorship For the purposes of this Derivative Works shall not include works that remain separable or merely the Work and Derivative Works thereof Contribution shall mean any work of including the original version of the Work and any modifications or additions to that Work or Derivative Works that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner For the purposes of this submitted means any form of or written communication sent to the Licensor or its including but not limited to communication on electronic mailing source code control and issue tracking systems that are managed or on behalf of
Definition: ThirdPartyNotices.txt:143
constexpr return_t< T > acosh(const T x) noexcept
Compile-time inverse hyperbolic cosine function.
Definition: acosh.hpp:62
constexpr return_t< T > asinh(const T x) noexcept
Compile-time inverse hyperbolic sine function.
Definition: asinh.hpp:59
constexpr return_t< T > atanh(const T x) noexcept
Compile-time inverse hyperbolic tangent function.
Definition: atanh.hpp:73
Base class for all 1D and 2D array, and related expressions.
Definition: ArrayBase.h:41
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_pow_op< typename Derived::Scalar, typename ExponentDerived::Scalar >, const Derived, const ExponentDerived > pow(const Eigen::ArrayBase< Derived > &x, const Eigen::ArrayBase< ExponentDerived > &exponents)
Definition: GlobalFunctions.h:143
#define EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(X)
Definition: GlobalFunctions.h:117
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:84
internal::traits< Derived >::Scalar Scalar
The numeric type of the expression' coefficients, e.g.
Definition: DenseBase.h:66
Definition: core.h:1240
type
Definition: core.h:575
constexpr bool isnan(T value)
Definition: format.h:2493
typename units::detail::squared_impl< U >::type squared
represents the unit type of class U squared
Definition: base.h:1165
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
dimensionless::scalar_t exp(const ScalarUnit x) noexcept
Compute exponential function.
Definition: math.h:332
dimensionless::scalar_t sinh(const AngleUnit angle) noexcept
Compute hyperbolic sine.
Definition: math.h:226
UnitType round(const UnitType x) noexcept
Round to nearest.
Definition: math.h:591
dimensionless::scalar_t tan(const AngleUnit angle) noexcept
Compute tangent.
Definition: math.h:100
angle::radian_t asin(const ScalarUnit x) noexcept
Compute arc sine.
Definition: math.h:137
angle::radian_t acos(const ScalarUnit x) noexcept
Compute arc cosine.
Definition: math.h:119
dimensionless::scalar_t expm1(const ScalarUnit x) noexcept
Compute exponential minus one.
Definition: math.h:420
dimensionless::scalar_t cosh(const AngleUnit angle) noexcept
Compute hyperbolic cosine.
Definition: math.h:206
angle::radian_t atan(const ScalarUnit x) noexcept
Compute arc tangent.
Definition: math.h:159
dimensionless::scalar_t log2(const ScalarUnit x) noexcept
Compute binary logarithm.
Definition: math.h:453
dimensionless::scalar_t cos(const AngleUnit angle) noexcept
Compute cosine.
Definition: math.h:61
dimensionless::scalar_t tanh(const AngleUnit angle) noexcept
Compute hyperbolic tangent.
Definition: math.h:246
UnitType floor(const UnitType x) noexcept
Round down value.
Definition: math.h:542
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
dimensionless::scalar_t log(const ScalarUnit x) noexcept
Compute natural logarithm.
Definition: math.h:349
dimensionless::scalar_t log1p(const ScalarUnit x) noexcept
Compute logarithm plus one.
Definition: math.h:437
dimensionless::scalar_t log10(const ScalarUnit x) noexcept
Compute common logarithm.
Definition: math.h:365
dimensionless::scalar_t sin(const AngleUnit angle) noexcept
Compute sine.
Definition: math.h:81
UnitType ceil(const UnitType x) noexcept
Round up value.
Definition: math.h:528
EIGEN_DEVICE_FUNC bool() isfinite(const T &x)
Definition: MathFunctions.h:1372
EIGEN_DEVICE_FUNC bool() isinf(const T &x)
Definition: MathFunctions.h:1371
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & exponents
Definition: GlobalFunctions.h:175
@ error
Definition: format.h:2559
GHC_FS_API path absolute(const path &p, std::error_code &ec)
Definition: filesystem.hpp:3539
Definition: Eigen_Colamd.h:50
Definition: core.h:2078
constexpr common_t< T1, T2 > pow(const T1 base, const T2 exp_term) noexcept
Compile-time power function.
Definition: pow.hpp:76
CwiseNullaryOp< scalar_constant_op< Scalar >, const typename conditional< is_same< typename traits< Expr >::XprKind, MatrixXpr >::value, matrix_type, array_type >::type > type
Definition: XprHelper.h:655
Definition: XprHelper.h:68
Definition: NullaryFunctors.h:18