WPILibC++ 2023.4.3
ConjugateGradient.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CONJUGATE_GRADIENT_H
11#define EIGEN_CONJUGATE_GRADIENT_H
12
13namespace Eigen {
14
15namespace internal {
16
17/** \internal Low-level conjugate gradient algorithm
18 * \param mat The matrix A
19 * \param rhs The right hand side vector b
20 * \param x On input and initial solution, on output the computed solution.
21 * \param precond A preconditioner being able to efficiently solve for an
22 * approximation of Ax=b (regardless of b)
23 * \param iters On input the max number of iteration, on output the number of performed iterations.
24 * \param tol_error On input the tolerance error, on output an estimation of the relative error.
25 */
26template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
28void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
29 const Preconditioner& precond, Index& iters,
30 typename Dest::RealScalar& tol_error)
31{
32 using std::sqrt;
33 using std::abs;
34 typedef typename Dest::RealScalar RealScalar;
35 typedef typename Dest::Scalar Scalar;
36 typedef Matrix<Scalar,Dynamic,1> VectorType;
37
38 RealScalar tol = tol_error;
39 Index maxIters = iters;
40
41 Index n = mat.cols();
42
43 VectorType residual = rhs - mat * x; //initial residual
44
45 RealScalar rhsNorm2 = rhs.squaredNorm();
46 if(rhsNorm2 == 0)
47 {
48 x.setZero();
49 iters = 0;
50 tol_error = 0;
51 return;
52 }
53 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
54 RealScalar threshold = numext::maxi(RealScalar(tol*tol*rhsNorm2),considerAsZero);
55 RealScalar residualNorm2 = residual.squaredNorm();
56 if (residualNorm2 < threshold)
57 {
58 iters = 0;
59 tol_error = sqrt(residualNorm2 / rhsNorm2);
60 return;
61 }
62
63 VectorType p(n);
64 p = precond.solve(residual); // initial search direction
65
66 VectorType z(n), tmp(n);
67 RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
68 Index i = 0;
69 while(i < maxIters)
70 {
71 tmp.noalias() = mat * p; // the bottleneck of the algorithm
72
73 Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
74 x += alpha * p; // update solution
75 residual -= alpha * tmp; // update residual
76
77 residualNorm2 = residual.squaredNorm();
78 if(residualNorm2 < threshold)
79 break;
80
81 z = precond.solve(residual); // approximately solve for "A z = residual"
82
83 RealScalar absOld = absNew;
84 absNew = numext::real(residual.dot(z)); // update the absolute value of r
85 RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
86 p = z + beta * p; // update search direction
87 i++;
88 }
89 tol_error = sqrt(residualNorm2 / rhsNorm2);
90 iters = i;
91}
92
93}
94
95template< typename _MatrixType, int _UpLo=Lower,
96 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
97class ConjugateGradient;
98
99namespace internal {
100
101template< typename _MatrixType, int _UpLo, typename _Preconditioner>
102struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
103{
104 typedef _MatrixType MatrixType;
105 typedef _Preconditioner Preconditioner;
106};
107
108}
109
110/** \ingroup IterativeLinearSolvers_Module
111 * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
112 *
113 * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
114 * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
115 *
116 * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
117 * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
118 * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
119 * Default is \c Lower, best performance is \c Lower|Upper.
120 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
121 *
122 * \implsparsesolverconcept
123 *
124 * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
125 * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
126 * and NumTraits<Scalar>::epsilon() for the tolerance.
127 *
128 * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
129 *
130 * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
131 * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
132 * case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
133 * See \ref TopicMultiThreading for details.
134 *
135 * This class can be used as the direct solver classes. Here is a typical usage example:
136 \code
137 int n = 10000;
138 VectorXd x(n), b(n);
139 SparseMatrix<double> A(n,n);
140 // fill A and b
141 ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
142 cg.compute(A);
143 x = cg.solve(b);
144 std::cout << "#iterations: " << cg.iterations() << std::endl;
145 std::cout << "estimated error: " << cg.error() << std::endl;
146 // update b, and solve again
147 x = cg.solve(b);
148 \endcode
149 *
150 * By default the iterations start with x=0 as an initial guess of the solution.
151 * One can control the start using the solveWithGuess() method.
152 *
153 * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
154 *
155 * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
156 */
157template< typename _MatrixType, int _UpLo, typename _Preconditioner>
158class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
159{
161 using Base::matrix;
162 using Base::m_error;
163 using Base::m_iterations;
164 using Base::m_info;
166public:
167 typedef _MatrixType MatrixType;
168 typedef typename MatrixType::Scalar Scalar;
169 typedef typename MatrixType::RealScalar RealScalar;
170 typedef _Preconditioner Preconditioner;
171
172 enum {
173 UpLo = _UpLo
174 };
175
176public:
177
178 /** Default constructor. */
180
181 /** Initialize the solver with matrix \a A for further \c Ax=b solving.
182 *
183 * This constructor is a shortcut for the default constructor followed
184 * by a call to compute().
185 *
186 * \warning this class stores a reference to the matrix A as well as some
187 * precomputed values that depend on it. Therefore, if \a A is changed
188 * this class becomes invalid. Call compute() to update it with the new
189 * matrix A, or modify a copy of A.
190 */
191 template<typename MatrixDerived>
193
195
196 /** \internal */
197 template<typename Rhs,typename Dest>
198 void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
199 {
200 typedef typename Base::MatrixWrapper MatrixWrapper;
202 enum {
203 TransposeInput = (!MatrixWrapper::MatrixFree)
204 && (UpLo==(Lower|Upper))
205 && (!MatrixType::IsRowMajor)
207 };
209 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
210 typedef typename internal::conditional<UpLo==(Lower|Upper),
211 RowMajorWrapper,
212 typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
213 >::type SelfAdjointWrapper;
214
215 m_iterations = Base::maxIterations();
216 m_error = Base::m_tolerance;
217
218 RowMajorWrapper row_mat(matrix());
219 internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error);
220 m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
221 }
222
223protected:
224
225};
226
227} // end namespace Eigen
228
229#endif // EIGEN_CONJUGATE_GRADIENT_H
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
#define EIGEN_DONT_INLINE
Definition: Macros.h:950
#define EIGEN_IMPLIES(a, b)
Definition: Macros.h:1325
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
constexpr common_return_t< T1, T2 > beta(const T1 a, const T2 b) noexcept
Compile-time beta function.
Definition: beta.hpp:36
A conjugate gradient solver for sparse (or dense) self-adjoint problems.
Definition: ConjugateGradient.h:159
_Preconditioner Preconditioner
Definition: ConjugateGradient.h:170
void _solve_vector_with_guess_impl(const Rhs &b, Dest &x) const
Definition: ConjugateGradient.h:198
MatrixType::Scalar Scalar
Definition: ConjugateGradient.h:168
ConjugateGradient()
Default constructor.
Definition: ConjugateGradient.h:179
~ConjugateGradient()
Definition: ConjugateGradient.h:194
MatrixType::RealScalar RealScalar
Definition: ConjugateGradient.h:169
ConjugateGradient(const EigenBase< MatrixDerived > &A)
Initialize the solver with matrix A for further Ax=b solving.
Definition: ConjugateGradient.h:192
_MatrixType MatrixType
Definition: ConjugateGradient.h:167
@ UpLo
Definition: ConjugateGradient.h:173
Base class for linear iterative solvers.
Definition: IterativeSolverBase.h:144
internal::generic_matrix_wrapper< MatrixType > MatrixWrapper
Definition: IterativeSolverBase.h:416
Index maxIterations() const
Definition: IterativeSolverBase.h:281
ComputationInfo m_info
Definition: IterativeSolverBase.h:438
MatrixWrapper::ActualMatrixType ActualMatrixType
Definition: IterativeSolverBase.h:417
RealScalar m_error
Definition: IterativeSolverBase.h:436
Preconditioner m_preconditioner
Definition: IterativeSolverBase.h:431
Index m_iterations
Definition: IterativeSolverBase.h:437
bool m_isInitialized
Definition: SparseSolverBase.h:119
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & derived()
Definition: SparseSolverBase.h:79
RealScalar m_tolerance
Definition: IterativeSolverBase.h:434
const ActualMatrixType & matrix() const
Definition: IterativeSolverBase.h:419
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
Definition: IterativeSolverBase.h:47
type
Definition: core.h:575
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
@ Success
Computation was successful.
Definition: Constants.h:442
@ NoConvergence
Iterative procedure did not converge.
Definition: Constants.h:446
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
Type
Definition: Constants.h:471
EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond, Index &iters, typename Dest::RealScalar &tol_error)
Definition: ConjugateGradient.h:28
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: MathFunctions.h:1091
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
b
Definition: data.h:44
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: Meta.h:109
Definition: ForwardDeclarations.h:17