WPILibC++ 2023.4.3-108-ge5452e3
|
\eigenvalues_module More...
Public Types | |
enum | { Size = MatrixType::RowsAtCompileTime , SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1) , Options = MatrixType::Options , MaxSize = MatrixType::MaxRowsAtCompileTime , MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) } |
typedef _MatrixType | MatrixType |
Synonym for the template parameter _MatrixType . More... | |
typedef MatrixType::Scalar | Scalar |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef Eigen::Index | Index |
typedef Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > | CoeffVectorType |
typedef internal::plain_col_type< MatrixType, RealScalar >::type | DiagonalType |
typedef Matrix< RealScalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > | SubDiagonalType |
typedef internal::remove_all< typenameMatrixType::RealReturnType >::type | MatrixTypeRealView |
typedef internal::TridiagonalizationMatrixTReturnType< MatrixTypeRealView > | MatrixTReturnType |
typedef internal::conditional< NumTraits< Scalar >::IsComplex, typenameinternal::add_const_on_value_type< typenameDiagonal< constMatrixType >::RealReturnType >::type, constDiagonal< constMatrixType > >::type | DiagonalReturnType |
typedef internal::conditional< NumTraits< Scalar >::IsComplex, typenameinternal::add_const_on_value_type< typenameDiagonal< constMatrixType,-1 >::RealReturnType >::type, constDiagonal< constMatrixType,-1 > >::type | SubDiagonalReturnType |
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > | HouseholderSequenceType |
Return type of matrixQ() More... | |
Public Member Functions | |
Tridiagonalization (Index size=Size==Dynamic ? 2 :Size) | |
Default constructor. More... | |
template<typename InputType > | |
Tridiagonalization (const EigenBase< InputType > &matrix) | |
Constructor; computes tridiagonal decomposition of given matrix. More... | |
template<typename InputType > | |
Tridiagonalization & | compute (const EigenBase< InputType > &matrix) |
Computes tridiagonal decomposition of given matrix. More... | |
CoeffVectorType | householderCoefficients () const |
Returns the Householder coefficients. More... | |
const MatrixType & | packedMatrix () const |
Returns the internal representation of the decomposition. More... | |
HouseholderSequenceType | matrixQ () const |
Returns the unitary matrix Q in the decomposition. More... | |
MatrixTReturnType | matrixT () const |
Returns an expression of the tridiagonal matrix T in the decomposition. More... | |
DiagonalReturnType | diagonal () const |
Returns the diagonal of the tridiagonal matrix T in the decomposition. More... | |
SubDiagonalReturnType | subDiagonal () const |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition. More... | |
Protected Attributes | |
MatrixType | m_matrix |
CoeffVectorType | m_hCoeffs |
bool | m_isInitialized |
\eigenvalues_module
Tridiagonal decomposition of a selfadjoint matrix
_MatrixType | the type of the matrix of which we are computing the tridiagonal decomposition; this is expected to be an instantiation of the Matrix class template. |
This class performs a tridiagonal decomposition of a selfadjoint matrix \( A \) such that: \( A = Q T Q^* \) where \( Q \) is unitary and \( T \) a real symmetric tridiagonal matrix.
A tridiagonal matrix is a matrix which has nonzero elements only on the main diagonal and the first diagonal below and above it. The Hessenberg decomposition of a selfadjoint matrix is in fact a tridiagonal decomposition. This class is used in SelfAdjointEigenSolver to compute the eigenvalues and eigenvectors of a selfadjoint matrix.
Call the function compute() to compute the tridiagonal decomposition of a given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) constructor which computes the tridiagonal Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixQ() and matrixT() functions to retrieve the matrices Q and T in the decomposition.
The documentation of Tridiagonalization(const MatrixType&) contains an example of the typical use of this class.
typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> Eigen::Tridiagonalization< _MatrixType >::CoeffVectorType |
typedef internal::conditional<NumTraits<Scalar>::IsComplex,typenameinternal::add_const_on_value_type<typenameDiagonal<constMatrixType>::RealReturnType>::type,constDiagonal<constMatrixType>>::type Eigen::Tridiagonalization< _MatrixType >::DiagonalReturnType |
typedef internal::plain_col_type<MatrixType,RealScalar>::type Eigen::Tridiagonalization< _MatrixType >::DiagonalType |
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> Eigen::Tridiagonalization< _MatrixType >::HouseholderSequenceType |
Return type of matrixQ()
typedef Eigen::Index Eigen::Tridiagonalization< _MatrixType >::Index |
typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> Eigen::Tridiagonalization< _MatrixType >::MatrixTReturnType |
typedef _MatrixType Eigen::Tridiagonalization< _MatrixType >::MatrixType |
Synonym for the template parameter _MatrixType
.
typedef internal::remove_all<typenameMatrixType::RealReturnType>::type Eigen::Tridiagonalization< _MatrixType >::MatrixTypeRealView |
typedef NumTraits<Scalar>::Real Eigen::Tridiagonalization< _MatrixType >::RealScalar |
typedef MatrixType::Scalar Eigen::Tridiagonalization< _MatrixType >::Scalar |
typedef internal::conditional<NumTraits<Scalar>::IsComplex,typenameinternal::add_const_on_value_type<typenameDiagonal<constMatrixType,-1>::RealReturnType>::type,constDiagonal<constMatrixType,-1>>::type Eigen::Tridiagonalization< _MatrixType >::SubDiagonalReturnType |
typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> Eigen::Tridiagonalization< _MatrixType >::SubDiagonalType |
anonymous enum |
|
inlineexplicit |
Default constructor.
[in] | size | Positive integer, size of the matrix whose tridiagonal decomposition will be computed. |
The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size
parameter is only used as a hint. It is not an error to give a wrong size
, but it may impair performance.
|
inlineexplicit |
Constructor; computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
This constructor calls compute() to compute the tridiagonal decomposition.
Example:
Output:
|
inline |
Computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
*this
The tridiagonal decomposition is computed by bringing the columns of the matrix successively in the required form using Householder reflections. The cost is \( 4n^3/3 \) flops, where \( n \) denotes the size of the given matrix.
This method reuses of the allocated data in the Tridiagonalization object, if the size of the matrix does not change.
Example:
Output:
Tridiagonalization< MatrixType >::DiagonalReturnType Eigen::Tridiagonalization< MatrixType >::diagonal |
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Example:
Output:
|
inline |
Returns the Householder coefficients.
The Householder coefficients allow the reconstruction of the matrix \( Q \) in the tridiagonal decomposition from the packed data.
Example:
Output:
|
inline |
Returns the unitary matrix Q in the decomposition.
This function returns a light-weight object of template class HouseholderSequence. You can either apply it directly to a matrix or you can convert it to a matrix of type MatrixType.
|
inline |
Returns an expression of the tridiagonal matrix T in the decomposition.
Currently, this function can be used to extract the matrix T from internal data and copy it to a dense matrix object. In most cases, it may be sufficient to directly use the packed matrix or the vector expressions returned by diagonal() and subDiagonal() instead of creating a new dense copy matrix with this function.
|
inline |
Returns the internal representation of the decomposition.
The returned matrix contains the following information:
See LAPACK for further details on this packed storage.
Example:
Output:
Tridiagonalization< MatrixType >::SubDiagonalReturnType Eigen::Tridiagonalization< MatrixType >::subDiagonal |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
|
protected |
|
protected |
|
protected |