WPILibC++ 2023.4.3-108-ge5452e3
Tridiagonalization.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_TRIDIAGONALIZATION_H
12#define EIGEN_TRIDIAGONALIZATION_H
13
14namespace Eigen {
15
16namespace internal {
17
18template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19template<typename MatrixType>
21 : public traits<typename MatrixType::PlainObject>
22{
23 typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
24 enum { Flags = 0 };
25};
26
27template<typename MatrixType, typename CoeffVectorType>
29void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
30}
31
32/** \eigenvalues_module \ingroup Eigenvalues_Module
33 *
34 *
35 * \class Tridiagonalization
36 *
37 * \brief Tridiagonal decomposition of a selfadjoint matrix
38 *
39 * \tparam _MatrixType the type of the matrix of which we are computing the
40 * tridiagonal decomposition; this is expected to be an instantiation of the
41 * Matrix class template.
42 *
43 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
44 * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
45 *
46 * A tridiagonal matrix is a matrix which has nonzero elements only on the
47 * main diagonal and the first diagonal below and above it. The Hessenberg
48 * decomposition of a selfadjoint matrix is in fact a tridiagonal
49 * decomposition. This class is used in SelfAdjointEigenSolver to compute the
50 * eigenvalues and eigenvectors of a selfadjoint matrix.
51 *
52 * Call the function compute() to compute the tridiagonal decomposition of a
53 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
54 * constructor which computes the tridiagonal Schur decomposition at
55 * construction time. Once the decomposition is computed, you can use the
56 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
57 * decomposition.
58 *
59 * The documentation of Tridiagonalization(const MatrixType&) contains an
60 * example of the typical use of this class.
61 *
62 * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
63 */
64template<typename _MatrixType> class Tridiagonalization
65{
66 public:
67
68 /** \brief Synonym for the template parameter \p _MatrixType. */
69 typedef _MatrixType MatrixType;
70
71 typedef typename MatrixType::Scalar Scalar;
73 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
74
75 enum {
76 Size = MatrixType::RowsAtCompileTime,
77 SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
78 Options = MatrixType::Options,
79 MaxSize = MatrixType::MaxRowsAtCompileTime,
80 MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
81 };
82
88
93
96 const Diagonal<const MatrixType, -1>
98
99 /** \brief Return type of matrixQ() */
101
102 /** \brief Default constructor.
103 *
104 * \param [in] size Positive integer, size of the matrix whose tridiagonal
105 * decomposition will be computed.
106 *
107 * The default constructor is useful in cases in which the user intends to
108 * perform decompositions via compute(). The \p size parameter is only
109 * used as a hint. It is not an error to give a wrong \p size, but it may
110 * impair performance.
111 *
112 * \sa compute() for an example.
113 */
115 : m_matrix(size,size),
116 m_hCoeffs(size > 1 ? size-1 : 1),
117 m_isInitialized(false)
118 {}
119
120 /** \brief Constructor; computes tridiagonal decomposition of given matrix.
121 *
122 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
123 * is to be computed.
124 *
125 * This constructor calls compute() to compute the tridiagonal decomposition.
126 *
127 * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
128 * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
129 */
130 template<typename InputType>
132 : m_matrix(matrix.derived()),
133 m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
134 m_isInitialized(false)
135 {
137 m_isInitialized = true;
138 }
139
140 /** \brief Computes tridiagonal decomposition of given matrix.
141 *
142 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
143 * is to be computed.
144 * \returns Reference to \c *this
145 *
146 * The tridiagonal decomposition is computed by bringing the columns of
147 * the matrix successively in the required form using Householder
148 * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
149 * the size of the given matrix.
150 *
151 * This method reuses of the allocated data in the Tridiagonalization
152 * object, if the size of the matrix does not change.
153 *
154 * Example: \include Tridiagonalization_compute.cpp
155 * Output: \verbinclude Tridiagonalization_compute.out
156 */
157 template<typename InputType>
159 {
160 m_matrix = matrix.derived();
161 m_hCoeffs.resize(matrix.rows()-1, 1);
163 m_isInitialized = true;
164 return *this;
165 }
166
167 /** \brief Returns the Householder coefficients.
168 *
169 * \returns a const reference to the vector of Householder coefficients
170 *
171 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
172 * the member function compute(const MatrixType&) has been called before
173 * to compute the tridiagonal decomposition of a matrix.
174 *
175 * The Householder coefficients allow the reconstruction of the matrix
176 * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
177 *
178 * Example: \include Tridiagonalization_householderCoefficients.cpp
179 * Output: \verbinclude Tridiagonalization_householderCoefficients.out
180 *
181 * \sa packedMatrix(), \ref Householder_Module "Householder module"
182 */
184 {
185 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
186 return m_hCoeffs;
187 }
188
189 /** \brief Returns the internal representation of the decomposition
190 *
191 * \returns a const reference to a matrix with the internal representation
192 * of the decomposition.
193 *
194 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
195 * the member function compute(const MatrixType&) has been called before
196 * to compute the tridiagonal decomposition of a matrix.
197 *
198 * The returned matrix contains the following information:
199 * - the strict upper triangular part is equal to the input matrix A.
200 * - the diagonal and lower sub-diagonal represent the real tridiagonal
201 * symmetric matrix T.
202 * - the rest of the lower part contains the Householder vectors that,
203 * combined with Householder coefficients returned by
204 * householderCoefficients(), allows to reconstruct the matrix Q as
205 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
206 * Here, the matrices \f$ H_i \f$ are the Householder transformations
207 * \f$ H_i = (I - h_i v_i v_i^T) \f$
208 * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
209 * \f$ v_i \f$ is the Householder vector defined by
210 * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
211 * with M the matrix returned by this function.
212 *
213 * See LAPACK for further details on this packed storage.
214 *
215 * Example: \include Tridiagonalization_packedMatrix.cpp
216 * Output: \verbinclude Tridiagonalization_packedMatrix.out
217 *
218 * \sa householderCoefficients()
219 */
220 inline const MatrixType& packedMatrix() const
221 {
222 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
223 return m_matrix;
224 }
225
226 /** \brief Returns the unitary matrix Q in the decomposition
227 *
228 * \returns object representing the matrix Q
229 *
230 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
231 * the member function compute(const MatrixType&) has been called before
232 * to compute the tridiagonal decomposition of a matrix.
233 *
234 * This function returns a light-weight object of template class
235 * HouseholderSequence. You can either apply it directly to a matrix or
236 * you can convert it to a matrix of type #MatrixType.
237 *
238 * \sa Tridiagonalization(const MatrixType&) for an example,
239 * matrixT(), class HouseholderSequence
240 */
242 {
243 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
244 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
245 .setLength(m_matrix.rows() - 1)
246 .setShift(1);
247 }
248
249 /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
250 *
251 * \returns expression object representing the matrix T
252 *
253 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
254 * the member function compute(const MatrixType&) has been called before
255 * to compute the tridiagonal decomposition of a matrix.
256 *
257 * Currently, this function can be used to extract the matrix T from internal
258 * data and copy it to a dense matrix object. In most cases, it may be
259 * sufficient to directly use the packed matrix or the vector expressions
260 * returned by diagonal() and subDiagonal() instead of creating a new
261 * dense copy matrix with this function.
262 *
263 * \sa Tridiagonalization(const MatrixType&) for an example,
264 * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
265 */
267 {
268 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
269 return MatrixTReturnType(m_matrix.real());
270 }
271
272 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
273 *
274 * \returns expression representing the diagonal of T
275 *
276 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
277 * the member function compute(const MatrixType&) has been called before
278 * to compute the tridiagonal decomposition of a matrix.
279 *
280 * Example: \include Tridiagonalization_diagonal.cpp
281 * Output: \verbinclude Tridiagonalization_diagonal.out
282 *
283 * \sa matrixT(), subDiagonal()
284 */
286
287 /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
288 *
289 * \returns expression representing the subdiagonal of T
290 *
291 * \pre Either the constructor Tridiagonalization(const MatrixType&) or
292 * the member function compute(const MatrixType&) has been called before
293 * to compute the tridiagonal decomposition of a matrix.
294 *
295 * \sa diagonal() for an example, matrixT()
296 */
298
299 protected:
300
304};
305
306template<typename MatrixType>
309{
310 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
311 return m_matrix.diagonal().real();
312}
313
314template<typename MatrixType>
317{
318 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
319 return m_matrix.template diagonal<-1>().real();
320}
321
322namespace internal {
323
324/** \internal
325 * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
326 *
327 * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
328 * On output, the strict upper part is left unchanged, and the lower triangular part
329 * represents the T and Q matrices in packed format has detailed below.
330 * \param[out] hCoeffs returned Householder coefficients (see below)
331 *
332 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
333 * and lower sub-diagonal of the matrix \a matA.
334 * The unitary matrix Q is represented in a compact way as a product of
335 * Householder reflectors \f$ H_i \f$ such that:
336 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
337 * The Householder reflectors are defined as
338 * \f$ H_i = (I - h_i v_i v_i^T) \f$
339 * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
340 * \f$ v_i \f$ is the Householder vector defined by
341 * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
342 *
343 * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
344 *
345 * \sa Tridiagonalization::packedMatrix()
346 */
347template<typename MatrixType, typename CoeffVectorType>
349void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
350{
351 using numext::conj;
352 typedef typename MatrixType::Scalar Scalar;
353 typedef typename MatrixType::RealScalar RealScalar;
354 Index n = matA.rows();
355 eigen_assert(n==matA.cols());
356 eigen_assert(n==hCoeffs.size()+1 || n==1);
357
358 for (Index i = 0; i<n-1; ++i)
359 {
360 Index remainingSize = n-i-1;
361 RealScalar beta;
362 Scalar h;
363 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
364
365 // Apply similarity transformation to remaining columns,
366 // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
367 matA.col(i).coeffRef(i+1) = 1;
368
369 hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
370 * (conj(h) * matA.col(i).tail(remainingSize)));
371
372 hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
373
374 matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
375 .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
376
377 matA.col(i).coeffRef(i+1) = beta;
378 hCoeffs.coeffRef(i) = h;
379 }
380}
381
382// forward declaration, implementation at the end of this file
383template<typename MatrixType,
384 int Size=MatrixType::ColsAtCompileTime,
386struct tridiagonalization_inplace_selector;
387
388/** \brief Performs a full tridiagonalization in place
389 *
390 * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
391 * decomposition is to be computed. Only the lower triangular part referenced.
392 * The rest is left unchanged. On output, the orthogonal matrix Q
393 * in the decomposition if \p extractQ is true.
394 * \param[out] diag The diagonal of the tridiagonal matrix T in the
395 * decomposition.
396 * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
397 * the decomposition.
398 * \param[in] extractQ If true, the orthogonal matrix Q in the
399 * decomposition is computed and stored in \p mat.
400 *
401 * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
402 * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
403 * symmetric tridiagonal matrix.
404 *
405 * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
406 * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
407 * part of the matrix \p mat is destroyed.
408 *
409 * The vectors \p diag and \p subdiag are not resized. The function
410 * assumes that they are already of the correct size. The length of the
411 * vector \p diag should equal the number of rows in \p mat, and the
412 * length of the vector \p subdiag should be one left.
413 *
414 * This implementation contains an optimized path for 3-by-3 matrices
415 * which is especially useful for plane fitting.
416 *
417 * \note Currently, it requires two temporary vectors to hold the intermediate
418 * Householder coefficients, and to reconstruct the matrix Q from the Householder
419 * reflectors.
420 *
421 * Example (this uses the same matrix as the example in
422 * Tridiagonalization::Tridiagonalization(const MatrixType&)):
423 * \include Tridiagonalization_decomposeInPlace.cpp
424 * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
425 *
426 * \sa class Tridiagonalization
427 */
428template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
430void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
431 CoeffVectorType& hcoeffs, bool extractQ)
432{
433 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
434 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
435}
436
437/** \internal
438 * General full tridiagonalization
439 */
440template<typename MatrixType, int Size, bool IsComplex>
442{
445 template<typename DiagonalType, typename SubDiagonalType>
446 static EIGEN_DEVICE_FUNC
447 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
448 {
449 tridiagonalization_inplace(mat, hCoeffs);
450 diag = mat.diagonal().real();
451 subdiag = mat.template diagonal<-1>().real();
452 if(extractQ)
453 mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
454 .setLength(mat.rows() - 1)
455 .setShift(1);
456 }
457};
458
459/** \internal
460 * Specialization for 3x3 real matrices.
461 * Especially useful for plane fitting.
462 */
463template<typename MatrixType>
464struct tridiagonalization_inplace_selector<MatrixType,3,false>
465{
466 typedef typename MatrixType::Scalar Scalar;
467 typedef typename MatrixType::RealScalar RealScalar;
468
469 template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
470 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
471 {
472 using std::sqrt;
474 diag[0] = mat(0,0);
475 RealScalar v1norm2 = numext::abs2(mat(2,0));
476 if(v1norm2 <= tol)
477 {
478 diag[1] = mat(1,1);
479 diag[2] = mat(2,2);
480 subdiag[0] = mat(1,0);
481 subdiag[1] = mat(2,1);
482 if (extractQ)
483 mat.setIdentity();
484 }
485 else
486 {
487 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
488 RealScalar invBeta = RealScalar(1)/beta;
489 Scalar m01 = mat(1,0) * invBeta;
490 Scalar m02 = mat(2,0) * invBeta;
491 Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
492 diag[1] = mat(1,1) + m02*q;
493 diag[2] = mat(2,2) - m02*q;
494 subdiag[0] = beta;
495 subdiag[1] = mat(2,1) - m01 * q;
496 if (extractQ)
497 {
498 mat << 1, 0, 0,
499 0, m01, m02,
500 0, m02, -m01;
501 }
502 }
503 }
504};
505
506/** \internal
507 * Trivial specialization for 1x1 matrices
508 */
509template<typename MatrixType, bool IsComplex>
510struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
511{
512 typedef typename MatrixType::Scalar Scalar;
513
514 template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
515 static EIGEN_DEVICE_FUNC
516 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
517 {
518 diag(0,0) = numext::real(mat(0,0));
519 if(extractQ)
520 mat(0,0) = Scalar(1);
521 }
522};
523
524/** \internal
525 * \eigenvalues_module \ingroup Eigenvalues_Module
526 *
527 * \brief Expression type for return value of Tridiagonalization::matrixT()
528 *
529 * \tparam MatrixType type of underlying dense matrix
530 */
531template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
532: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
533{
534 public:
535 /** \brief Constructor.
536 *
537 * \param[in] mat The underlying dense matrix
538 */
539 TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
540
541 template <typename ResultType>
542 inline void evalTo(ResultType& result) const
543 {
544 result.setZero();
545 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
546 result.diagonal() = m_matrix.diagonal();
547 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
548 }
549
552
553 protected:
554 typename MatrixType::Nested m_matrix;
555};
556
557} // end namespace internal
558
559} // end namespace Eigen
560
561#endif // EIGEN_TRIDIAGONALIZATION_H
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
internal::conditional< NumTraits< Scalar >::IsComplex, constCwiseUnaryOp< internal::scalar_real_op< Scalar >, constDerived >, constDerived & >::type RealReturnType
Definition: CommonCwiseUnaryOps.h:24
EIGEN_DEVICE_FUNC ConjugateReturnType conjugate() const
Definition: CommonCwiseUnaryOps.h:74
#define EIGEN_NOEXCEPT
Definition: Macros.h:1428
#define EIGEN_CONSTEXPR
Definition: Macros.h:797
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define eigen_assert(x)
Definition: Macros.h:1047
constexpr common_return_t< T1, T2 > beta(const T1 a, const T2 b) noexcept
Compile-time beta function.
Definition: beta.hpp:36
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:65
\householder_module
Definition: HouseholderSequence.h:121
EIGEN_DEVICE_FUNC HouseholderSequence & setShift(Index shift)
Sets the shift of the Householder sequence.
Definition: HouseholderSequence.h:461
EIGEN_DEVICE_FUNC HouseholderSequence & setLength(Index length)
Sets the length of the Householder sequence.
Definition: HouseholderSequence.h:443
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:271
Definition: ReturnByValue.h:52
\eigenvalues_module
Definition: Tridiagonalization.h:65
HouseholderSequenceType matrixQ() const
Returns the unitary matrix Q in the decomposition.
Definition: Tridiagonalization.h:241
Tridiagonalization(const EigenBase< InputType > &matrix)
Constructor; computes tridiagonal decomposition of given matrix.
Definition: Tridiagonalization.h:131
DiagonalReturnType diagonal() const
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:308
internal::remove_all< typenameMatrixType::RealReturnType >::type MatrixTypeRealView
Definition: Tridiagonalization.h:86
Matrix< RealScalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > SubDiagonalType
Definition: Tridiagonalization.h:85
internal::conditional< NumTraits< Scalar >::IsComplex, typenameinternal::add_const_on_value_type< typenameDiagonal< constMatrixType >::RealReturnType >::type, constDiagonal< constMatrixType > >::type DiagonalReturnType
Definition: Tridiagonalization.h:92
MatrixTReturnType matrixT() const
Returns an expression of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:266
CoeffVectorType m_hCoeffs
Definition: Tridiagonalization.h:302
Eigen::Index Index
Definition: Tridiagonalization.h:73
const MatrixType & packedMatrix() const
Returns the internal representation of the decomposition.
Definition: Tridiagonalization.h:220
Tridiagonalization & compute(const EigenBase< InputType > &matrix)
Computes tridiagonal decomposition of given matrix.
Definition: Tridiagonalization.h:158
NumTraits< Scalar >::Real RealScalar
Definition: Tridiagonalization.h:72
Tridiagonalization(Index size=Size==Dynamic ? 2 :Size)
Default constructor.
Definition: Tridiagonalization.h:114
internal::conditional< NumTraits< Scalar >::IsComplex, typenameinternal::add_const_on_value_type< typenameDiagonal< constMatrixType,-1 >::RealReturnType >::type, constDiagonal< constMatrixType,-1 > >::type SubDiagonalReturnType
Definition: Tridiagonalization.h:97
SubDiagonalReturnType subDiagonal() const
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:316
CoeffVectorType householderCoefficients() const
Returns the Householder coefficients.
Definition: Tridiagonalization.h:183
bool m_isInitialized
Definition: Tridiagonalization.h:303
MatrixType m_matrix
Definition: Tridiagonalization.h:301
@ Size
Definition: Tridiagonalization.h:76
@ MaxSize
Definition: Tridiagonalization.h:79
@ MaxSizeMinusOne
Definition: Tridiagonalization.h:80
@ SizeMinusOne
Definition: Tridiagonalization.h:77
@ Options
Definition: Tridiagonalization.h:78
Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > CoeffVectorType
Definition: Tridiagonalization.h:83
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition: Tridiagonalization.h:69
internal::plain_col_type< MatrixType, RealScalar >::type DiagonalType
Definition: Tridiagonalization.h:84
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ()
Definition: Tridiagonalization.h:100
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:71
internal::TridiagonalizationMatrixTReturnType< MatrixTypeRealView > MatrixTReturnType
Definition: Tridiagonalization.h:87
type
Definition: core.h:575
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_DEVICE_FUNC void tridiagonalization_inplace(MatrixType &matA, CoeffVectorType &hCoeffs)
Definition: Tridiagonalization.h:349
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
result
Definition: format.h:2564
Definition: Eigen_Colamd.h:50
static constexpr const unit_t< compound_unit< energy::joule, time::seconds > > h(6.626070040e-34)
Planck constant.
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: EigenBase.h:60
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: Tridiagonalization.h:533
MatrixType::Nested m_matrix
Definition: Tridiagonalization.h:554
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: Tridiagonalization.h:551
void evalTo(ResultType &result) const
Definition: Tridiagonalization.h:542
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: Tridiagonalization.h:550
TridiagonalizationMatrixTReturnType(const MatrixType &mat)
Constructor.
Definition: Tridiagonalization.h:539
Definition: Meta.h:109
T type
Definition: Meta.h:126
MatrixType::PlainObject ReturnType
Definition: Tridiagonalization.h:23
Definition: ForwardDeclarations.h:17
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:512
static EIGEN_DEVICE_FUNC void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &, CoeffVectorType &, bool extractQ)
Definition: Tridiagonalization.h:516
static void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &subdiag, CoeffVectorType &, bool extractQ)
Definition: Tridiagonalization.h:470
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:466
MatrixType::RealScalar RealScalar
Definition: Tridiagonalization.h:467
Definition: Tridiagonalization.h:442
static EIGEN_DEVICE_FUNC void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &subdiag, CoeffVectorType &hCoeffs, bool extractQ)
Definition: Tridiagonalization.h:447
Tridiagonalization< MatrixType >::CoeffVectorType CoeffVectorType
Definition: Tridiagonalization.h:443
Tridiagonalization< MatrixType >::HouseholderSequenceType HouseholderSequenceType
Definition: Tridiagonalization.h:444
Definition: Meta.h:96