WPILibC++ 2023.4.3-108-ge5452e3
Eigen::LLT< _MatrixType, _UpLo > Class Template Reference

Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/Cholesky/LLT.h>

Inheritance diagram for Eigen::LLT< _MatrixType, _UpLo >:
Eigen::SolverBase< LLT< _MatrixType, _UpLo > > Eigen::EigenBase< LLT< _MatrixType, _UpLo > >

Public Types

enum  { MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
 
enum  { PacketSize = internal::packet_traits<Scalar>::size , AlignmentMask = int(PacketSize)-1 , UpLo = _UpLo }
 
typedef _MatrixType MatrixType
 
typedef SolverBase< LLTBase
 
typedef internal::LLT_Traits< MatrixType, UpLoTraits
 
- Public Types inherited from Eigen::SolverBase< LLT< _MatrixType, _UpLo > >
enum  
 
typedef EigenBase< LLT< _MatrixType, _UpLo > > Base
 
typedef internal::traits< LLT< _MatrixType, _UpLo > >::Scalar Scalar
 
typedef Scalar CoeffReturnType
 
typedef internal::add_const< Transpose< constDerived > >::type ConstTransposeReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
- Public Types inherited from Eigen::EigenBase< LLT< _MatrixType, _UpLo > >
typedef Eigen::Index Index
 The interface type of indices. More...
 
typedef internal::traits< LLT< _MatrixType, _UpLo > >::StorageKind StorageKind
 

Public Member Functions

 LLT ()
 Default Constructor. More...
 
 LLT (Index size)
 Default Constructor with memory preallocation. More...
 
template<typename InputType >
 LLT (const EigenBase< InputType > &matrix)
 
template<typename InputType >
 LLT (EigenBase< InputType > &matrix)
 Constructs a LLT factorization from a given matrix. More...
 
Traits::MatrixU matrixU () const
 
Traits::MatrixL matrixL () const
 
template<typename Derived >
void solveInPlace (const MatrixBase< Derived > &bAndX) const
 
template<typename InputType >
LLTcompute (const EigenBase< InputType > &matrix)
 
RealScalar rcond () const
 
const MatrixTypematrixLLT () const
 
MatrixType reconstructedMatrix () const
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
const LLTadjoint () const EIGEN_NOEXCEPT
 
EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
template<typename VectorType >
LLTrankUpdate (const VectorType &vec, const RealScalar &sigma=1)
 
template<typename RhsType , typename DstType >
void _solve_impl (const RhsType &rhs, DstType &dst) const
 
template<bool Conjugate, typename RhsType , typename DstType >
void _solve_impl_transposed (const RhsType &rhs, DstType &dst) const
 
template<typename InputType >
LLT< MatrixType, _UpLo > & compute (const EigenBase< InputType > &a)
 Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix. More...
 
template<typename VectorType >
LLT< _MatrixType, _UpLo > & rankUpdate (const VectorType &v, const RealScalar &sigma)
 Performs a rank one update (or dowdate) of the current decomposition. More...
 
- Public Member Functions inherited from Eigen::SolverBase< LLT< _MatrixType, _UpLo > >
 SolverBase ()
 Default constructor. More...
 
 ~SolverBase ()
 
const Solve< LLT< _MatrixType, _UpLo >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
ConstTransposeReturnType transpose () const
 
AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC LLT< _MatrixType, _UpLo > & derived ()
 
EIGEN_DEVICE_FUNC const LLT< _MatrixType, _UpLo > & derived () const
 
- Public Member Functions inherited from Eigen::EigenBase< LLT< _MatrixType, _UpLo > >
EIGEN_DEVICE_FUNC LLT< _MatrixType, _UpLo > & derived ()
 
EIGEN_DEVICE_FUNC const LLT< _MatrixType, _UpLo > & derived () const
 
EIGEN_DEVICE_FUNC LLT< _MatrixType, _UpLo > & const_cast_derived () const
 
EIGEN_DEVICE_FUNC const LLT< _MatrixType, _UpLo > & const_derived () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC void evalTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void addTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void subTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheRight (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheLeft (Dest &dst) const
 

Static Protected Member Functions

static void check_template_parameters ()
 

Protected Attributes

MatrixType m_matrix
 
RealScalar m_l1_norm
 
bool m_isInitialized
 
ComputationInfo m_info
 

Friends

class SolverBase< LLT >
 

Additional Inherited Members

- Protected Member Functions inherited from Eigen::SolverBase< LLT< _MatrixType, _UpLo > >
void _check_solve_assertion (const Rhs &b) const
 

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::LLT< _MatrixType, _UpLo >

Standard Cholesky decomposition (LL^T) of a matrix and associated features.

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the LL^T Cholesky decomposition
_UpLothe triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.

This class performs a LL^T Cholesky decomposition of a symmetric, positive definite matrix A such that A = LL^* = U^*U, where L is lower triangular.

While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, for that purpose, we recommend the Cholesky decomposition without square root which is more stable and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other situations like generalised eigen problems with hermitian matrices.

Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

Example:

Output:

Performance: for best performance, it is recommended to use a column-major storage format with the Lower triangular part (the default), or, equivalently, a row-major storage format with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization step, and rank-updates can be up to 3 times slower.

This class supports the inplace decomposition mechanism.

Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. Therefore, the strict lower part does not have to store correct values.

See also
MatrixBase::llt(), SelfAdjointView::llt(), class LDLT

Member Typedef Documentation

◆ Base

template<typename _MatrixType , int _UpLo>
typedef SolverBase<LLT> Eigen::LLT< _MatrixType, _UpLo >::Base

◆ MatrixType

template<typename _MatrixType , int _UpLo>
typedef _MatrixType Eigen::LLT< _MatrixType, _UpLo >::MatrixType

◆ Traits

template<typename _MatrixType , int _UpLo>
typedef internal::LLT_Traits<MatrixType,UpLo> Eigen::LLT< _MatrixType, _UpLo >::Traits

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType , int _UpLo>
anonymous enum
Enumerator
MaxColsAtCompileTime 

◆ anonymous enum

template<typename _MatrixType , int _UpLo>
anonymous enum
Enumerator
PacketSize 
AlignmentMask 
UpLo 

Constructor & Destructor Documentation

◆ LLT() [1/4]

template<typename _MatrixType , int _UpLo>
Eigen::LLT< _MatrixType, _UpLo >::LLT ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LLT::compute(const MatrixType&).

◆ LLT() [2/4]

template<typename _MatrixType , int _UpLo>
Eigen::LLT< _MatrixType, _UpLo >::LLT ( Index  size)
inlineexplicit

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
LLT()

◆ LLT() [3/4]

template<typename _MatrixType , int _UpLo>
template<typename InputType >
Eigen::LLT< _MatrixType, _UpLo >::LLT ( const EigenBase< InputType > &  matrix)
inlineexplicit

◆ LLT() [4/4]

template<typename _MatrixType , int _UpLo>
template<typename InputType >
Eigen::LLT< _MatrixType, _UpLo >::LLT ( EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a LLT factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

See also
LLT(const EigenBase&)

Member Function Documentation

◆ _solve_impl()

template<typename _MatrixType , int _UpLo>
template<typename RhsType , typename DstType >
void Eigen::LLT< _MatrixType, _UpLo >::_solve_impl ( const RhsType &  rhs,
DstType &  dst 
) const

◆ _solve_impl_transposed()

template<typename _MatrixType , int _UpLo>
template<bool Conjugate, typename RhsType , typename DstType >
void Eigen::LLT< _MatrixType, _UpLo >::_solve_impl_transposed ( const RhsType &  rhs,
DstType &  dst 
) const

◆ adjoint()

template<typename _MatrixType , int _UpLo>
const LLT & Eigen::LLT< _MatrixType, _UpLo >::adjoint ( ) const
inline
Returns
the adjoint of *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.

This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:

x = decomposition.adjoint().solve(b)
b
Definition: data.h:44

◆ check_template_parameters()

template<typename _MatrixType , int _UpLo>
static void Eigen::LLT< _MatrixType, _UpLo >::check_template_parameters ( )
inlinestaticprotected

◆ cols()

template<typename _MatrixType , int _UpLo>
EIGEN_CONSTEXPR Index Eigen::LLT< _MatrixType, _UpLo >::cols ( ) const
inline

◆ compute() [1/2]

template<typename _MatrixType , int _UpLo>
template<typename InputType >
LLT< MatrixType, _UpLo > & Eigen::LLT< _MatrixType, _UpLo >::compute ( const EigenBase< InputType > &  a)

Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix.

Returns
a reference to *this

Example:

Output:

 

◆ compute() [2/2]

template<typename _MatrixType , int _UpLo>
template<typename InputType >
LLT & Eigen::LLT< _MatrixType, _UpLo >::compute ( const EigenBase< InputType > &  matrix)

◆ info()

template<typename _MatrixType , int _UpLo>
ComputationInfo Eigen::LLT< _MatrixType, _UpLo >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was successful, NumericalIssue if the matrix.appears not to be positive definite.

◆ matrixL()

template<typename _MatrixType , int _UpLo>
Traits::MatrixL Eigen::LLT< _MatrixType, _UpLo >::matrixL ( ) const
inline
Returns
a view of the lower triangular matrix L

◆ matrixLLT()

template<typename _MatrixType , int _UpLo>
const MatrixType & Eigen::LLT< _MatrixType, _UpLo >::matrixLLT ( ) const
inline
Returns
the LLT decomposition matrix

TODO: document the storage layout

◆ matrixU()

template<typename _MatrixType , int _UpLo>
Traits::MatrixU Eigen::LLT< _MatrixType, _UpLo >::matrixU ( ) const
inline
Returns
a view of the upper triangular matrix U

◆ rankUpdate() [1/2]

template<typename _MatrixType , int _UpLo>
template<typename VectorType >
LLT< _MatrixType, _UpLo > & Eigen::LLT< _MatrixType, _UpLo >::rankUpdate ( const VectorType &  v,
const RealScalar &  sigma 
)

Performs a rank one update (or dowdate) of the current decomposition.

If A = LL^* before the rank one update, then after it we have LL^* = A + sigma * v v^* where v must be a vector of same dimension.

◆ rankUpdate() [2/2]

template<typename _MatrixType , int _UpLo>
template<typename VectorType >
LLT & Eigen::LLT< _MatrixType, _UpLo >::rankUpdate ( const VectorType &  vec,
const RealScalar &  sigma = 1 
)

◆ rcond()

template<typename _MatrixType , int _UpLo>
RealScalar Eigen::LLT< _MatrixType, _UpLo >::rcond ( ) const
inline
Returns
an estimate of the reciprocal condition number of the matrix of which *this is the Cholesky decomposition.

◆ reconstructedMatrix()

template<typename MatrixType , int _UpLo>
MatrixType Eigen::LLT< MatrixType, _UpLo >::reconstructedMatrix
Returns
the matrix represented by the decomposition, i.e., it returns the product: L L^*. This function is provided for debug purpose.

◆ rows()

template<typename _MatrixType , int _UpLo>
EIGEN_CONSTEXPR Index Eigen::LLT< _MatrixType, _UpLo >::rows ( ) const
inline

◆ solveInPlace()

template<typename MatrixType , int _UpLo>
template<typename Derived >
void Eigen::LLT< MatrixType, _UpLo >::solveInPlace ( const MatrixBase< Derived > &  bAndX) const

Friends And Related Function Documentation

◆ SolverBase< LLT >

template<typename _MatrixType , int _UpLo>
friend class SolverBase< LLT >
friend

Member Data Documentation

◆ m_info

template<typename _MatrixType , int _UpLo>
ComputationInfo Eigen::LLT< _MatrixType, _UpLo >::m_info
protected

◆ m_isInitialized

template<typename _MatrixType , int _UpLo>
bool Eigen::LLT< _MatrixType, _UpLo >::m_isInitialized
protected

◆ m_l1_norm

template<typename _MatrixType , int _UpLo>
RealScalar Eigen::LLT< _MatrixType, _UpLo >::m_l1_norm
protected

◆ m_matrix

template<typename _MatrixType , int _UpLo>
MatrixType Eigen::LLT< _MatrixType, _UpLo >::m_matrix
protected

The documentation for this class was generated from the following file: