WPILibC++ 2023.4.3-108-ge5452e3
|
Complete orthogonal decomposition (COD) of a matrix. More...
Public Member Functions | |
CompleteOrthogonalDecomposition () | |
Default Constructor. More... | |
CompleteOrthogonalDecomposition (Index rows, Index cols) | |
Default Constructor with memory preallocation. More... | |
template<typename InputType > | |
CompleteOrthogonalDecomposition (const EigenBase< InputType > &matrix) | |
Constructs a complete orthogonal decomposition from a given matrix. More... | |
template<typename InputType > | |
CompleteOrthogonalDecomposition (EigenBase< InputType > &matrix) | |
Constructs a complete orthogonal decomposition from a given matrix. More... | |
HouseholderSequenceType | householderQ (void) const |
HouseholderSequenceType | matrixQ (void) const |
MatrixType | matrixZ () const |
const MatrixType & | matrixQTZ () const |
const MatrixType & | matrixT () const |
template<typename InputType > | |
CompleteOrthogonalDecomposition & | compute (const EigenBase< InputType > &matrix) |
const PermutationType & | colsPermutation () const |
MatrixType::RealScalar | absDeterminant () const |
MatrixType::RealScalar | logAbsDeterminant () const |
Index | rank () const |
Index | dimensionOfKernel () const |
bool | isInjective () const |
bool | isSurjective () const |
bool | isInvertible () const |
const Inverse< CompleteOrthogonalDecomposition > | pseudoInverse () const |
Index | rows () const |
Index | cols () const |
const HCoeffsType & | hCoeffs () const |
const HCoeffsType & | zCoeffs () const |
CompleteOrthogonalDecomposition & | setThreshold (const RealScalar &threshold) |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. More... | |
CompleteOrthogonalDecomposition & | setThreshold (Default_t) |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. More... | |
RealScalar | threshold () const |
Returns the threshold that will be used by certain methods such as rank(). More... | |
Index | nonzeroPivots () const |
RealScalar | maxPivot () const |
ComputationInfo | info () const |
Reports whether the complete orthogonal decomposition was successful. More... | |
template<typename RhsType , typename DstType > | |
void | _solve_impl (const RhsType &rhs, DstType &dst) const |
template<bool Conjugate, typename RhsType , typename DstType > | |
void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
Public Member Functions inherited from Eigen::SolverBase< CompleteOrthogonalDecomposition< _MatrixType > > | |
SolverBase () | |
Default constructor. More... | |
~SolverBase () | |
const Solve< CompleteOrthogonalDecomposition< _MatrixType >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
ConstTransposeReturnType | transpose () const |
AdjointReturnType | adjoint () const |
EIGEN_DEVICE_FUNC CompleteOrthogonalDecomposition< _MatrixType > & | derived () |
EIGEN_DEVICE_FUNC const CompleteOrthogonalDecomposition< _MatrixType > & | derived () const |
Public Member Functions inherited from Eigen::EigenBase< CompleteOrthogonalDecomposition< _MatrixType > > | |
EIGEN_DEVICE_FUNC CompleteOrthogonalDecomposition< _MatrixType > & | derived () |
EIGEN_DEVICE_FUNC const CompleteOrthogonalDecomposition< _MatrixType > & | derived () const |
EIGEN_DEVICE_FUNC CompleteOrthogonalDecomposition< _MatrixType > & | const_cast_derived () const |
EIGEN_DEVICE_FUNC const CompleteOrthogonalDecomposition< _MatrixType > & | const_derived () const |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
Protected Member Functions | |
template<bool Transpose_, typename Rhs > | |
void | _check_solve_assertion (const Rhs &b) const |
void | computeInPlace () |
Performs the complete orthogonal decomposition of the given matrix matrix. More... | |
template<bool Conjugate, typename Rhs > | |
void | applyZOnTheLeftInPlace (Rhs &rhs) const |
Overwrites rhs with \( \mathbf{Z} * \mathbf{rhs} \) or \( \mathbf{\overline Z} * \mathbf{rhs} \) if Conjugate is set to true . More... | |
template<typename Rhs > | |
void | applyZAdjointOnTheLeftInPlace (Rhs &rhs) const |
Overwrites rhs with \( \mathbf{Z}^* * \mathbf{rhs} \). More... | |
Protected Member Functions inherited from Eigen::SolverBase< CompleteOrthogonalDecomposition< _MatrixType > > | |
void | _check_solve_assertion (const Rhs &b) const |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
ColPivHouseholderQR< MatrixType > | m_cpqr |
HCoeffsType | m_zCoeffs |
RowVectorType | m_temp |
Friends | |
template<typename Derived > | |
struct | internal::solve_assertion |
Complete orthogonal decomposition (COD) of a matrix.
MatrixType | the type of the matrix of which we are computing the COD. |
This class performs a rank-revealing complete orthogonal decomposition of a matrix A into matrices P, Q, T, and Z such that
\[ \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \begin{bmatrix} \mathbf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z} \]
by using Householder transformations. Here, P is a permutation matrix, Q and Z are unitary matrices and T an upper triangular matrix of size rank-by-rank. A may be rank deficient.
This class supports the inplace decomposition mechanism.
typedef SolverBase<CompleteOrthogonalDecomposition> Eigen::CompleteOrthogonalDecomposition< _MatrixType >::Base |
typedef internal::plain_diag_type<MatrixType>::type Eigen::CompleteOrthogonalDecomposition< _MatrixType >::HCoeffsType |
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename HCoeffsType::ConjugateReturnType>::type> Eigen::CompleteOrthogonalDecomposition< _MatrixType >::HouseholderSequenceType |
typedef internal::plain_row_type<MatrixType,Index>::type Eigen::CompleteOrthogonalDecomposition< _MatrixType >::IntRowVectorType |
typedef _MatrixType Eigen::CompleteOrthogonalDecomposition< _MatrixType >::MatrixType |
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::CompleteOrthogonalDecomposition< _MatrixType >::PermutationType |
typedef MatrixType::PlainObject Eigen::CompleteOrthogonalDecomposition< _MatrixType >::PlainObject |
typedef internal::plain_row_type<MatrixType,RealScalar>::type Eigen::CompleteOrthogonalDecomposition< _MatrixType >::RealRowVectorType |
typedef internal::plain_row_type<MatrixType>::type Eigen::CompleteOrthogonalDecomposition< _MatrixType >::RowVectorType |
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via CompleteOrthogonalDecomposition::compute(const* MatrixType&)
.
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inlineexplicit |
Constructs a complete orthogonal decomposition from a given matrix.
This constructor computes the complete orthogonal decomposition of the matrix matrix by calling the method compute(). The default threshold for rank determination will be used. It is a short cut for:
|
inlineexplicit |
Constructs a complete orthogonal decomposition from a given matrix.
This overloaded constructor is provided for inplace decomposition when MatrixType
is a Eigen::Ref.
|
inlineprotected |
void Eigen::CompleteOrthogonalDecomposition< _MatrixType >::_solve_impl | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
void Eigen::CompleteOrthogonalDecomposition< _MatrixType >::_solve_impl_transposed | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
MatrixType::RealScalar Eigen::CompleteOrthogonalDecomposition< MatrixType >::absDeterminant |
|
protected |
Overwrites rhs with \( \mathbf{Z}^* * \mathbf{rhs} \).
|
protected |
Overwrites rhs with \( \mathbf{Z} * \mathbf{rhs} \) or \( \mathbf{\overline Z} * \mathbf{rhs} \) if Conjugate
is set to true
.
|
inlinestaticprotected |
|
inline |
|
inline |
|
inline |
|
protected |
Performs the complete orthogonal decomposition of the given matrix matrix.
The result of the factorization is stored into *this
, and a reference to *this
is returned.
|
inline |
|
inline |
Q
.For advanced uses only.
CompleteOrthogonalDecomposition< MatrixType >::HouseholderSequenceType Eigen::CompleteOrthogonalDecomposition< MatrixType >::householderQ | ( | void | ) | const |
|
inline |
Reports whether the complete orthogonal decomposition was successful.
Success
. It is provided for compatibility with other factorization routines. Success
|
inline |
|
inline |
|
inline |
MatrixType::RealScalar Eigen::CompleteOrthogonalDecomposition< MatrixType >::logAbsDeterminant |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
this->pseudoInverse()*rhs
to solve a linear systems. It is more efficient and numerically stable to call this->solve(rhs)
.
|
inline |
|
inline |
|
inline |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero.
Most be called before calling compute().
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than \( \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \) where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
|
inline |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
See the documentation of setThreshold(const RealScalar&).
|
inline |
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).
|
inline |
Z
.For advanced uses only.
|
friend |
|
protected |
|
protected |
|
protected |