WPILibC++ 2023.4.3-108-ge5452e3
Eigen::ColPivHouseholderQR< _MatrixType > Class Template Reference

Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/Eigen/src/QR/ColPivHouseholderQR.h>

Inheritance diagram for Eigen::ColPivHouseholderQR< _MatrixType >:
Eigen::SolverBase< ColPivHouseholderQR< _MatrixType > > Eigen::EigenBase< ColPivHouseholderQR< _MatrixType > >

Public Types

enum  { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime , MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
 
typedef _MatrixType MatrixType
 
typedef SolverBase< ColPivHouseholderQRBase
 
typedef internal::plain_diag_type< MatrixType >::type HCoeffsType
 
typedef PermutationMatrix< ColsAtCompileTime, MaxColsAtCompileTimePermutationType
 
typedef internal::plain_row_type< MatrixType, Index >::type IntRowVectorType
 
typedef internal::plain_row_type< MatrixType >::type RowVectorType
 
typedef internal::plain_row_type< MatrixType, RealScalar >::type RealRowVectorType
 
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename HCoeffsType::ConjugateReturnType >::typeHouseholderSequenceType
 
typedef MatrixType::PlainObject PlainObject
 
- Public Types inherited from Eigen::SolverBase< ColPivHouseholderQR< _MatrixType > >
enum  
 
typedef EigenBase< ColPivHouseholderQR< _MatrixType > > Base
 
typedef internal::traits< ColPivHouseholderQR< _MatrixType > >::Scalar Scalar
 
typedef Scalar CoeffReturnType
 
typedef internal::add_const< Transpose< constDerived > >::type ConstTransposeReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
- Public Types inherited from Eigen::EigenBase< ColPivHouseholderQR< _MatrixType > >
typedef Eigen::Index Index
 The interface type of indices. More...
 
typedef internal::traits< ColPivHouseholderQR< _MatrixType > >::StorageKind StorageKind
 

Public Member Functions

 ColPivHouseholderQR ()
 Default Constructor. More...
 
 ColPivHouseholderQR (Index rows, Index cols)
 Default Constructor with memory preallocation. More...
 
template<typename InputType >
 ColPivHouseholderQR (const EigenBase< InputType > &matrix)
 Constructs a QR factorization from a given matrix. More...
 
template<typename InputType >
 ColPivHouseholderQR (EigenBase< InputType > &matrix)
 Constructs a QR factorization from a given matrix. More...
 
HouseholderSequenceType householderQ () const
 
HouseholderSequenceType matrixQ () const
 
const MatrixTypematrixQR () const
 
const MatrixTypematrixR () const
 
template<typename InputType >
ColPivHouseholderQRcompute (const EigenBase< InputType > &matrix)
 
const PermutationTypecolsPermutation () const
 
MatrixType::RealScalar absDeterminant () const
 
MatrixType::RealScalar logAbsDeterminant () const
 
Index rank () const
 
Index dimensionOfKernel () const
 
bool isInjective () const
 
bool isSurjective () const
 
bool isInvertible () const
 
const Inverse< ColPivHouseholderQRinverse () const
 
Index rows () const
 
Index cols () const
 
const HCoeffsTypehCoeffs () const
 
ColPivHouseholderQRsetThreshold (const RealScalar &threshold)
 Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. More...
 
ColPivHouseholderQRsetThreshold (Default_t)
 Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. More...
 
RealScalar threshold () const
 Returns the threshold that will be used by certain methods such as rank(). More...
 
Index nonzeroPivots () const
 
RealScalar maxPivot () const
 
ComputationInfo info () const
 Reports whether the QR factorization was successful. More...
 
template<typename RhsType , typename DstType >
void _solve_impl (const RhsType &rhs, DstType &dst) const
 
template<bool Conjugate, typename RhsType , typename DstType >
void _solve_impl_transposed (const RhsType &rhs, DstType &dst) const
 
template<typename InputType >
ColPivHouseholderQR< MatrixType > & compute (const EigenBase< InputType > &matrix)
 Performs the QR factorization of the given matrix matrix. More...
 
- Public Member Functions inherited from Eigen::SolverBase< ColPivHouseholderQR< _MatrixType > >
 SolverBase ()
 Default constructor. More...
 
 ~SolverBase ()
 
const Solve< ColPivHouseholderQR< _MatrixType >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
ConstTransposeReturnType transpose () const
 
AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC ColPivHouseholderQR< _MatrixType > & derived ()
 
EIGEN_DEVICE_FUNC const ColPivHouseholderQR< _MatrixType > & derived () const
 
- Public Member Functions inherited from Eigen::EigenBase< ColPivHouseholderQR< _MatrixType > >
EIGEN_DEVICE_FUNC ColPivHouseholderQR< _MatrixType > & derived ()
 
EIGEN_DEVICE_FUNC const ColPivHouseholderQR< _MatrixType > & derived () const
 
EIGEN_DEVICE_FUNC ColPivHouseholderQR< _MatrixType > & const_cast_derived () const
 
EIGEN_DEVICE_FUNC const ColPivHouseholderQR< _MatrixType > & const_derived () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size () const EIGEN_NOEXCEPT
 
EIGEN_DEVICE_FUNC void evalTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void addTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void subTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheRight (Dest &dst) const
 
EIGEN_DEVICE_FUNC void applyThisOnTheLeft (Dest &dst) const
 

Protected Member Functions

void computeInPlace ()
 
- Protected Member Functions inherited from Eigen::SolverBase< ColPivHouseholderQR< _MatrixType > >
void _check_solve_assertion (const Rhs &b) const
 

Static Protected Member Functions

static void check_template_parameters ()
 

Protected Attributes

MatrixType m_qr
 
HCoeffsType m_hCoeffs
 
PermutationType m_colsPermutation
 
IntRowVectorType m_colsTranspositions
 
RowVectorType m_temp
 
RealRowVectorType m_colNormsUpdated
 
RealRowVectorType m_colNormsDirect
 
bool m_isInitialized
 
bool m_usePrescribedThreshold
 
RealScalar m_prescribedThreshold
 
RealScalar m_maxpivot
 
Index m_nonzero_pivots
 
Index m_det_pq
 

Friends

class SolverBase< ColPivHouseholderQR >
 
class CompleteOrthogonalDecomposition< MatrixType >
 

Detailed Description

template<typename _MatrixType>
class Eigen::ColPivHouseholderQR< _MatrixType >

Householder rank-revealing QR decomposition of a matrix with column-pivoting.

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the QR decomposition

This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that

\[ \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.

This decomposition performs column pivoting in order to be rank-revealing and improve numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.

This class supports the inplace decomposition mechanism.

See also
MatrixBase::colPivHouseholderQr()

Member Typedef Documentation

◆ Base

template<typename _MatrixType >
typedef SolverBase<ColPivHouseholderQR> Eigen::ColPivHouseholderQR< _MatrixType >::Base

◆ HCoeffsType

template<typename _MatrixType >
typedef internal::plain_diag_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::HCoeffsType

◆ HouseholderSequenceType

template<typename _MatrixType >
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> Eigen::ColPivHouseholderQR< _MatrixType >::HouseholderSequenceType

◆ IntRowVectorType

template<typename _MatrixType >
typedef internal::plain_row_type<MatrixType,Index>::type Eigen::ColPivHouseholderQR< _MatrixType >::IntRowVectorType

◆ MatrixType

template<typename _MatrixType >
typedef _MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::MatrixType

◆ PermutationType

template<typename _MatrixType >
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::ColPivHouseholderQR< _MatrixType >::PermutationType

◆ PlainObject

template<typename _MatrixType >
typedef MatrixType::PlainObject Eigen::ColPivHouseholderQR< _MatrixType >::PlainObject

◆ RealRowVectorType

template<typename _MatrixType >
typedef internal::plain_row_type<MatrixType,RealScalar>::type Eigen::ColPivHouseholderQR< _MatrixType >::RealRowVectorType

◆ RowVectorType

template<typename _MatrixType >
typedef internal::plain_row_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::RowVectorType

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType >
anonymous enum
Enumerator
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Constructor & Destructor Documentation

◆ ColPivHouseholderQR() [1/4]

template<typename _MatrixType >
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).

◆ ColPivHouseholderQR() [2/4]

template<typename _MatrixType >
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( Index  rows,
Index  cols 
)
inline

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
ColPivHouseholderQR()

◆ ColPivHouseholderQR() [3/4]

template<typename _MatrixType >
template<typename InputType >
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( const EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a QR factorization from a given matrix.

This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:

ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
qr.compute(matrix);
See also
compute()

◆ ColPivHouseholderQR() [4/4]

template<typename _MatrixType >
template<typename InputType >
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a QR factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

See also
ColPivHouseholderQR(const EigenBase&)

Member Function Documentation

◆ _solve_impl()

template<typename _MatrixType >
template<typename RhsType , typename DstType >
void Eigen::ColPivHouseholderQR< _MatrixType >::_solve_impl ( const RhsType &  rhs,
DstType &  dst 
) const

◆ _solve_impl_transposed()

template<typename _MatrixType >
template<bool Conjugate, typename RhsType , typename DstType >
void Eigen::ColPivHouseholderQR< _MatrixType >::_solve_impl_transposed ( const RhsType &  rhs,
DstType &  dst 
) const

◆ absDeterminant()

template<typename MatrixType >
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::absDeterminant
Returns
the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note
This is only for square matrices.
Warning
a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
See also
logAbsDeterminant(), MatrixBase::determinant()

◆ check_template_parameters()

template<typename _MatrixType >
static void Eigen::ColPivHouseholderQR< _MatrixType >::check_template_parameters ( )
inlinestaticprotected

◆ cols()

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::cols ( ) const
inline

◆ colsPermutation()

template<typename _MatrixType >
const PermutationType & Eigen::ColPivHouseholderQR< _MatrixType >::colsPermutation ( ) const
inline
Returns
a const reference to the column permutation matrix

◆ compute() [1/2]

template<typename _MatrixType >
template<typename InputType >
ColPivHouseholderQR & Eigen::ColPivHouseholderQR< _MatrixType >::compute ( const EigenBase< InputType > &  matrix)

◆ compute() [2/2]

template<typename _MatrixType >
template<typename InputType >
ColPivHouseholderQR< MatrixType > & Eigen::ColPivHouseholderQR< _MatrixType >::compute ( const EigenBase< InputType > &  matrix)

Performs the QR factorization of the given matrix matrix.

The result of the factorization is stored into *this, and a reference to *this is returned.

See also
class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)

◆ computeInPlace()

template<typename MatrixType >
void Eigen::ColPivHouseholderQR< MatrixType >::computeInPlace
protected

◆ dimensionOfKernel()

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::dimensionOfKernel ( ) const
inline
Returns
the dimension of the kernel of the matrix of which *this is the QR decomposition.
Note
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ hCoeffs()

template<typename _MatrixType >
const HCoeffsType & Eigen::ColPivHouseholderQR< _MatrixType >::hCoeffs ( ) const
inline
Returns
a const reference to the vector of Householder coefficients used to represent the factor Q.

For advanced uses only.

◆ householderQ()

Returns
the matrix Q as a sequence of householder transformations. You can extract the meaningful part only by using:
qr.householderQ().setLength(qr.nonzeroPivots())

◆ info()

template<typename _MatrixType >
ComputationInfo Eigen::ColPivHouseholderQR< _MatrixType >::info ( ) const
inline

Reports whether the QR factorization was successful.

Note
This function always returns Success. It is provided for compatibility with other factorization routines.
Returns
Success

◆ inverse()

template<typename _MatrixType >
const Inverse< ColPivHouseholderQR > Eigen::ColPivHouseholderQR< _MatrixType >::inverse ( ) const
inline
Returns
the inverse of the matrix of which *this is the QR decomposition.
Note
If this matrix is not invertible, the returned matrix has undefined coefficients. Use isInvertible() to first determine whether this matrix is invertible.

◆ isInjective()

template<typename _MatrixType >
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInjective ( ) const
inline
Returns
true if the matrix of which *this is the QR decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise.
Note
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ isInvertible()

template<typename _MatrixType >
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInvertible ( ) const
inline
Returns
true if the matrix of which *this is the QR decomposition is invertible.
Note
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ isSurjective()

template<typename _MatrixType >
bool Eigen::ColPivHouseholderQR< _MatrixType >::isSurjective ( ) const
inline
Returns
true if the matrix of which *this is the QR decomposition represents a surjective linear map; false otherwise.
Note
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ logAbsDeterminant()

template<typename MatrixType >
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::logAbsDeterminant
Returns
the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note
This is only for square matrices.
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
See also
absDeterminant(), MatrixBase::determinant()

◆ matrixQ()

template<typename _MatrixType >
HouseholderSequenceType Eigen::ColPivHouseholderQR< _MatrixType >::matrixQ ( ) const
inline

◆ matrixQR()

template<typename _MatrixType >
const MatrixType & Eigen::ColPivHouseholderQR< _MatrixType >::matrixQR ( ) const
inline
Returns
a reference to the matrix where the Householder QR decomposition is stored

◆ matrixR()

template<typename _MatrixType >
const MatrixType & Eigen::ColPivHouseholderQR< _MatrixType >::matrixR ( ) const
inline
Returns
a reference to the matrix where the result Householder QR is stored
Warning
The strict lower part of this matrix contains internal values. Only the upper triangular part should be referenced. To get it, use
matrixR().template triangularView<Upper>()
const MatrixType & matrixR() const
Definition: ColPivHouseholderQR.h:204
For rank-deficient matrices, use
matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
Index rank() const
Definition: ColPivHouseholderQR.h:255

◆ maxPivot()

template<typename _MatrixType >
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::maxPivot ( ) const
inline
Returns
the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of R.

◆ nonzeroPivots()

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::nonzeroPivots ( ) const
inline
Returns
the number of nonzero pivots in the QR decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms.
See also
rank()

◆ rank()

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::rank ( ) const
inline
Returns
the rank of the matrix of which *this is the QR decomposition.
Note
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

◆ rows()

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::rows ( ) const
inline

◆ setThreshold() [1/2]

template<typename _MatrixType >
ColPivHouseholderQR & Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold ( const RealScalar &  threshold)
inline

Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero.

This is not used for the QR decomposition itself.

When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.

Parameters
thresholdThe new value to use as the threshold.

A pivot will be considered nonzero if its absolute value is strictly greater than \( \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \) where maxpivot is the biggest pivot.

If you want to come back to the default behavior, call setThreshold(Default_t)

◆ setThreshold() [2/2]

template<typename _MatrixType >
ColPivHouseholderQR & Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold ( Default_t  )
inline

Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.

You should pass the special object Eigen::Default as parameter here.

qr.setThreshold(Eigen::Default);
@ Default
Definition: Constants.h:362

See the documentation of setThreshold(const RealScalar&).

◆ threshold()

template<typename _MatrixType >
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::threshold ( ) const
inline

Returns the threshold that will be used by certain methods such as rank().

See the documentation of setThreshold(const RealScalar&).

Friends And Related Function Documentation

◆ CompleteOrthogonalDecomposition< MatrixType >

template<typename _MatrixType >
friend class CompleteOrthogonalDecomposition< MatrixType >
friend

◆ SolverBase< ColPivHouseholderQR >

template<typename _MatrixType >
friend class SolverBase< ColPivHouseholderQR >
friend

Member Data Documentation

◆ m_colNormsDirect

template<typename _MatrixType >
RealRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colNormsDirect
protected

◆ m_colNormsUpdated

template<typename _MatrixType >
RealRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colNormsUpdated
protected

◆ m_colsPermutation

template<typename _MatrixType >
PermutationType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsPermutation
protected

◆ m_colsTranspositions

template<typename _MatrixType >
IntRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsTranspositions
protected

◆ m_det_pq

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_det_pq
protected

◆ m_hCoeffs

template<typename _MatrixType >
HCoeffsType Eigen::ColPivHouseholderQR< _MatrixType >::m_hCoeffs
protected

◆ m_isInitialized

template<typename _MatrixType >
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_isInitialized
protected

◆ m_maxpivot

template<typename _MatrixType >
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_maxpivot
protected

◆ m_nonzero_pivots

template<typename _MatrixType >
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_nonzero_pivots
protected

◆ m_prescribedThreshold

template<typename _MatrixType >
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_prescribedThreshold
protected

◆ m_qr

template<typename _MatrixType >
MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::m_qr
protected

◆ m_temp

template<typename _MatrixType >
RowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_temp
protected

◆ m_usePrescribedThreshold

template<typename _MatrixType >
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_usePrescribedThreshold
protected

The documentation for this class was generated from the following file: