WPILibC++ 2023.4.3
tree.h
Go to the documentation of this file.
1/*-
2 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#ifndef UV_TREE_H_
27#define UV_TREE_H_
28
29#ifndef UV__UNUSED
30# if __GNUC__
31# define UV__UNUSED __attribute__((unused))
32# else
33# define UV__UNUSED
34# endif
35#endif
36
37/*
38 * This file defines data structures for different types of trees:
39 * splay trees and red-black trees.
40 *
41 * A splay tree is a self-organizing data structure. Every operation
42 * on the tree causes a splay to happen. The splay moves the requested
43 * node to the root of the tree and partly rebalances it.
44 *
45 * This has the benefit that request locality causes faster lookups as
46 * the requested nodes move to the top of the tree. On the other hand,
47 * every lookup causes memory writes.
48 *
49 * The Balance Theorem bounds the total access time for m operations
50 * and n inserts on an initially empty tree as O((m + n)lg n). The
51 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
52 *
53 * A red-black tree is a binary search tree with the node color as an
54 * extra attribute. It fulfills a set of conditions:
55 * - every search path from the root to a leaf consists of the
56 * same number of black nodes,
57 * - each red node (except for the root) has a black parent,
58 * - each leaf node is black.
59 *
60 * Every operation on a red-black tree is bounded as O(lg n).
61 * The maximum height of a red-black tree is 2lg (n+1).
62 */
63
64#define SPLAY_HEAD(name, type) \
65struct name { \
66 struct type *sph_root; /* root of the tree */ \
67}
68
69#define SPLAY_INITIALIZER(root) \
70 { NULL }
71
72#define SPLAY_INIT(root) do { \
73 (root)->sph_root = NULL; \
74} while (/*CONSTCOND*/ 0)
75
76#define SPLAY_ENTRY(type) \
77struct { \
78 struct type *spe_left; /* left element */ \
79 struct type *spe_right; /* right element */ \
80}
81
82#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
83#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
84#define SPLAY_ROOT(head) (head)->sph_root
85#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
86
87/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
88#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
89 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
90 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
91 (head)->sph_root = tmp; \
92} while (/*CONSTCOND*/ 0)
93
94#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
95 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
96 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
97 (head)->sph_root = tmp; \
98} while (/*CONSTCOND*/ 0)
99
100#define SPLAY_LINKLEFT(head, tmp, field) do { \
101 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
102 tmp = (head)->sph_root; \
103 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
104} while (/*CONSTCOND*/ 0)
105
106#define SPLAY_LINKRIGHT(head, tmp, field) do { \
107 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
108 tmp = (head)->sph_root; \
109 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
110} while (/*CONSTCOND*/ 0)
111
112#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
113 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
114 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field); \
115 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
116 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
117} while (/*CONSTCOND*/ 0)
118
119/* Generates prototypes and inline functions */
120
121#define SPLAY_PROTOTYPE(name, type, field, cmp) \
122void name##_SPLAY(struct name *, struct type *); \
123void name##_SPLAY_MINMAX(struct name *, int); \
124struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
125struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
126 \
127/* Finds the node with the same key as elm */ \
128static __inline struct type * \
129name##_SPLAY_FIND(struct name *head, struct type *elm) \
130{ \
131 if (SPLAY_EMPTY(head)) \
132 return(NULL); \
133 name##_SPLAY(head, elm); \
134 if ((cmp)(elm, (head)->sph_root) == 0) \
135 return (head->sph_root); \
136 return (NULL); \
137} \
138 \
139static __inline struct type * \
140name##_SPLAY_NEXT(struct name *head, struct type *elm) \
141{ \
142 name##_SPLAY(head, elm); \
143 if (SPLAY_RIGHT(elm, field) != NULL) { \
144 elm = SPLAY_RIGHT(elm, field); \
145 while (SPLAY_LEFT(elm, field) != NULL) { \
146 elm = SPLAY_LEFT(elm, field); \
147 } \
148 } else \
149 elm = NULL; \
150 return (elm); \
151} \
152 \
153static __inline struct type * \
154name##_SPLAY_MIN_MAX(struct name *head, int val) \
155{ \
156 name##_SPLAY_MINMAX(head, val); \
157 return (SPLAY_ROOT(head)); \
158}
159
160/* Main splay operation.
161 * Moves node close to the key of elm to top
162 */
163#define SPLAY_GENERATE(name, type, field, cmp) \
164struct type * \
165name##_SPLAY_INSERT(struct name *head, struct type *elm) \
166{ \
167 if (SPLAY_EMPTY(head)) { \
168 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
169 } else { \
170 int __comp; \
171 name##_SPLAY(head, elm); \
172 __comp = (cmp)(elm, (head)->sph_root); \
173 if(__comp < 0) { \
174 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field); \
175 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
176 SPLAY_LEFT((head)->sph_root, field) = NULL; \
177 } else if (__comp > 0) { \
178 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field); \
179 SPLAY_LEFT(elm, field) = (head)->sph_root; \
180 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
181 } else \
182 return ((head)->sph_root); \
183 } \
184 (head)->sph_root = (elm); \
185 return (NULL); \
186} \
187 \
188struct type * \
189name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
190{ \
191 struct type *__tmp; \
192 if (SPLAY_EMPTY(head)) \
193 return (NULL); \
194 name##_SPLAY(head, elm); \
195 if ((cmp)(elm, (head)->sph_root) == 0) { \
196 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
197 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
198 } else { \
199 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
200 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
201 name##_SPLAY(head, elm); \
202 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
203 } \
204 return (elm); \
205 } \
206 return (NULL); \
207} \
208 \
209void \
210name##_SPLAY(struct name *head, struct type *elm) \
211{ \
212 struct type __node, *__left, *__right, *__tmp; \
213 int __comp; \
214 \
215 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \
216 __left = __right = &__node; \
217 \
218 while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
219 if (__comp < 0) { \
220 __tmp = SPLAY_LEFT((head)->sph_root, field); \
221 if (__tmp == NULL) \
222 break; \
223 if ((cmp)(elm, __tmp) < 0){ \
224 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
225 if (SPLAY_LEFT((head)->sph_root, field) == NULL) \
226 break; \
227 } \
228 SPLAY_LINKLEFT(head, __right, field); \
229 } else if (__comp > 0) { \
230 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
231 if (__tmp == NULL) \
232 break; \
233 if ((cmp)(elm, __tmp) > 0){ \
234 SPLAY_ROTATE_LEFT(head, __tmp, field); \
235 if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \
236 break; \
237 } \
238 SPLAY_LINKRIGHT(head, __left, field); \
239 } \
240 } \
241 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
242} \
243 \
244/* Splay with either the minimum or the maximum element \
245 * Used to find minimum or maximum element in tree. \
246 */ \
247void name##_SPLAY_MINMAX(struct name *head, int __comp) \
248{ \
249 struct type __node, *__left, *__right, *__tmp; \
250 \
251 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \
252 __left = __right = &__node; \
253 \
254 for (;;) { \
255 if (__comp < 0) { \
256 __tmp = SPLAY_LEFT((head)->sph_root, field); \
257 if (__tmp == NULL) \
258 break; \
259 if (__comp < 0){ \
260 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
261 if (SPLAY_LEFT((head)->sph_root, field) == NULL) \
262 break; \
263 } \
264 SPLAY_LINKLEFT(head, __right, field); \
265 } else if (__comp > 0) { \
266 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
267 if (__tmp == NULL) \
268 break; \
269 if (__comp > 0) { \
270 SPLAY_ROTATE_LEFT(head, __tmp, field); \
271 if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \
272 break; \
273 } \
274 SPLAY_LINKRIGHT(head, __left, field); \
275 } \
276 } \
277 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
280#define SPLAY_NEGINF -1
281#define SPLAY_INF 1
283#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
284#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
285#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
286#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
287#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
288 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
289#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
290 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
291
292#define SPLAY_FOREACH(x, name, head) \
293 for ((x) = SPLAY_MIN(name, head); \
294 (x) != NULL; \
295 (x) = SPLAY_NEXT(name, head, x))
297/* Macros that define a red-black tree */
298#define RB_HEAD(name, type) \
299struct name { \
300 struct type *rbh_root; /* root of the tree */ \
302
303#define RB_INITIALIZER(root) \
304 { NULL }
305
306#define RB_INIT(root) do { \
307 (root)->rbh_root = NULL; \
308} while (/*CONSTCOND*/ 0)
310#define RB_BLACK 0
311#define RB_RED 1
312#define RB_ENTRY(type) \
313struct { \
314 struct type *rbe_left; /* left element */ \
315 struct type *rbe_right; /* right element */ \
316 struct type *rbe_parent; /* parent element */ \
317 int rbe_color; /* node color */ \
320#define RB_LEFT(elm, field) (elm)->field.rbe_left
321#define RB_RIGHT(elm, field) (elm)->field.rbe_right
322#define RB_PARENT(elm, field) (elm)->field.rbe_parent
323#define RB_COLOR(elm, field) (elm)->field.rbe_color
324#define RB_ROOT(head) (head)->rbh_root
325#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
326
327#define RB_SET(elm, parent, field) do { \
328 RB_PARENT(elm, field) = parent; \
329 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
330 RB_COLOR(elm, field) = RB_RED; \
331} while (/*CONSTCOND*/ 0)
332
333#define RB_SET_BLACKRED(black, red, field) do { \
334 RB_COLOR(black, field) = RB_BLACK; \
335 RB_COLOR(red, field) = RB_RED; \
336} while (/*CONSTCOND*/ 0)
338#ifndef RB_AUGMENT
339#define RB_AUGMENT(x) do {} while (0)
340#endif
341
342#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
343 (tmp) = RB_RIGHT(elm, field); \
344 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
345 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
346 } \
347 RB_AUGMENT(elm); \
348 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
349 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
350 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
351 else \
352 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
353 } else \
354 (head)->rbh_root = (tmp); \
355 RB_LEFT(tmp, field) = (elm); \
356 RB_PARENT(elm, field) = (tmp); \
357 RB_AUGMENT(tmp); \
358 if ((RB_PARENT(tmp, field))) \
359 RB_AUGMENT(RB_PARENT(tmp, field)); \
360} while (/*CONSTCOND*/ 0)
361
362#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
363 (tmp) = RB_LEFT(elm, field); \
364 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
365 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
366 } \
367 RB_AUGMENT(elm); \
368 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
369 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
370 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
371 else \
372 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
373 } else \
374 (head)->rbh_root = (tmp); \
375 RB_RIGHT(tmp, field) = (elm); \
376 RB_PARENT(elm, field) = (tmp); \
377 RB_AUGMENT(tmp); \
378 if ((RB_PARENT(tmp, field))) \
379 RB_AUGMENT(RB_PARENT(tmp, field)); \
380} while (/*CONSTCOND*/ 0)
382/* Generates prototypes and inline functions */
383#define RB_PROTOTYPE(name, type, field, cmp) \
384 RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
385#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
386 RB_PROTOTYPE_INTERNAL(name, type, field, cmp, UV__UNUSED static)
387#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
388attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
389attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
390attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
391attr struct type *name##_RB_INSERT(struct name *, struct type *); \
392attr struct type *name##_RB_FIND(struct name *, struct type *); \
393attr struct type *name##_RB_NFIND(struct name *, struct type *); \
394attr struct type *name##_RB_NEXT(struct type *); \
395attr struct type *name##_RB_PREV(struct type *); \
396attr struct type *name##_RB_MINMAX(struct name *, int); \
397 \
398
399/* Main rb operation.
400 * Moves node close to the key of elm to top
401 */
402#define RB_GENERATE(name, type, field, cmp) \
403 RB_GENERATE_INTERNAL(name, type, field, cmp,)
404#define RB_GENERATE_STATIC(name, type, field, cmp) \
405 RB_GENERATE_INTERNAL(name, type, field, cmp, UV__UNUSED static)
406#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
407attr void \
408name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
409{ \
410 struct type *parent, *gparent, *tmp; \
411 while ((parent = RB_PARENT(elm, field)) != NULL && \
412 RB_COLOR(parent, field) == RB_RED) { \
413 gparent = RB_PARENT(parent, field); \
414 if (parent == RB_LEFT(gparent, field)) { \
415 tmp = RB_RIGHT(gparent, field); \
416 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
417 RB_COLOR(tmp, field) = RB_BLACK; \
418 RB_SET_BLACKRED(parent, gparent, field); \
419 elm = gparent; \
420 continue; \
421 } \
422 if (RB_RIGHT(parent, field) == elm) { \
423 RB_ROTATE_LEFT(head, parent, tmp, field); \
424 tmp = parent; \
425 parent = elm; \
426 elm = tmp; \
427 } \
428 RB_SET_BLACKRED(parent, gparent, field); \
429 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
430 } else { \
431 tmp = RB_LEFT(gparent, field); \
432 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
433 RB_COLOR(tmp, field) = RB_BLACK; \
434 RB_SET_BLACKRED(parent, gparent, field); \
435 elm = gparent; \
436 continue; \
437 } \
438 if (RB_LEFT(parent, field) == elm) { \
439 RB_ROTATE_RIGHT(head, parent, tmp, field); \
440 tmp = parent; \
441 parent = elm; \
442 elm = tmp; \
443 } \
444 RB_SET_BLACKRED(parent, gparent, field); \
445 RB_ROTATE_LEFT(head, gparent, tmp, field); \
446 } \
447 } \
448 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
449} \
450 \
451attr void \
452name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, \
453 struct type *elm) \
454{ \
455 struct type *tmp; \
456 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
457 elm != RB_ROOT(head)) { \
458 if (RB_LEFT(parent, field) == elm) { \
459 tmp = RB_RIGHT(parent, field); \
460 if (RB_COLOR(tmp, field) == RB_RED) { \
461 RB_SET_BLACKRED(tmp, parent, field); \
462 RB_ROTATE_LEFT(head, parent, tmp, field); \
463 tmp = RB_RIGHT(parent, field); \
464 } \
465 if ((RB_LEFT(tmp, field) == NULL || \
466 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
467 (RB_RIGHT(tmp, field) == NULL || \
468 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
469 RB_COLOR(tmp, field) = RB_RED; \
470 elm = parent; \
471 parent = RB_PARENT(elm, field); \
472 } else { \
473 if (RB_RIGHT(tmp, field) == NULL || \
474 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) { \
475 struct type *oleft; \
476 if ((oleft = RB_LEFT(tmp, field)) \
477 != NULL) \
478 RB_COLOR(oleft, field) = RB_BLACK; \
479 RB_COLOR(tmp, field) = RB_RED; \
480 RB_ROTATE_RIGHT(head, tmp, oleft, field); \
481 tmp = RB_RIGHT(parent, field); \
482 } \
483 RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
484 RB_COLOR(parent, field) = RB_BLACK; \
485 if (RB_RIGHT(tmp, field)) \
486 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK; \
487 RB_ROTATE_LEFT(head, parent, tmp, field); \
488 elm = RB_ROOT(head); \
489 break; \
490 } \
491 } else { \
492 tmp = RB_LEFT(parent, field); \
493 if (RB_COLOR(tmp, field) == RB_RED) { \
494 RB_SET_BLACKRED(tmp, parent, field); \
495 RB_ROTATE_RIGHT(head, parent, tmp, field); \
496 tmp = RB_LEFT(parent, field); \
497 } \
498 if ((RB_LEFT(tmp, field) == NULL || \
499 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
500 (RB_RIGHT(tmp, field) == NULL || \
501 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
502 RB_COLOR(tmp, field) = RB_RED; \
503 elm = parent; \
504 parent = RB_PARENT(elm, field); \
505 } else { \
506 if (RB_LEFT(tmp, field) == NULL || \
507 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) { \
508 struct type *oright; \
509 if ((oright = RB_RIGHT(tmp, field)) \
510 != NULL) \
511 RB_COLOR(oright, field) = RB_BLACK; \
512 RB_COLOR(tmp, field) = RB_RED; \
513 RB_ROTATE_LEFT(head, tmp, oright, field); \
514 tmp = RB_LEFT(parent, field); \
515 } \
516 RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
517 RB_COLOR(parent, field) = RB_BLACK; \
518 if (RB_LEFT(tmp, field)) \
519 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK; \
520 RB_ROTATE_RIGHT(head, parent, tmp, field); \
521 elm = RB_ROOT(head); \
522 break; \
523 } \
524 } \
525 } \
526 if (elm) \
527 RB_COLOR(elm, field) = RB_BLACK; \
528} \
529 \
530attr struct type * \
531name##_RB_REMOVE(struct name *head, struct type *elm) \
532{ \
533 struct type *child, *parent, *old = elm; \
534 int color; \
535 if (RB_LEFT(elm, field) == NULL) \
536 child = RB_RIGHT(elm, field); \
537 else if (RB_RIGHT(elm, field) == NULL) \
538 child = RB_LEFT(elm, field); \
539 else { \
540 struct type *left; \
541 elm = RB_RIGHT(elm, field); \
542 while ((left = RB_LEFT(elm, field)) != NULL) \
543 elm = left; \
544 child = RB_RIGHT(elm, field); \
545 parent = RB_PARENT(elm, field); \
546 color = RB_COLOR(elm, field); \
547 if (child) \
548 RB_PARENT(child, field) = parent; \
549 if (parent) { \
550 if (RB_LEFT(parent, field) == elm) \
551 RB_LEFT(parent, field) = child; \
552 else \
553 RB_RIGHT(parent, field) = child; \
554 RB_AUGMENT(parent); \
555 } else \
556 RB_ROOT(head) = child; \
557 if (RB_PARENT(elm, field) == old) \
558 parent = elm; \
559 (elm)->field = (old)->field; \
560 if (RB_PARENT(old, field)) { \
561 if (RB_LEFT(RB_PARENT(old, field), field) == old) \
562 RB_LEFT(RB_PARENT(old, field), field) = elm; \
563 else \
564 RB_RIGHT(RB_PARENT(old, field), field) = elm; \
565 RB_AUGMENT(RB_PARENT(old, field)); \
566 } else \
567 RB_ROOT(head) = elm; \
568 RB_PARENT(RB_LEFT(old, field), field) = elm; \
569 if (RB_RIGHT(old, field)) \
570 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
571 if (parent) { \
572 left = parent; \
573 do { \
574 RB_AUGMENT(left); \
575 } while ((left = RB_PARENT(left, field)) != NULL); \
576 } \
577 goto color; \
578 } \
579 parent = RB_PARENT(elm, field); \
580 color = RB_COLOR(elm, field); \
581 if (child) \
582 RB_PARENT(child, field) = parent; \
583 if (parent) { \
584 if (RB_LEFT(parent, field) == elm) \
585 RB_LEFT(parent, field) = child; \
586 else \
587 RB_RIGHT(parent, field) = child; \
588 RB_AUGMENT(parent); \
589 } else \
590 RB_ROOT(head) = child; \
591color: \
592 if (color == RB_BLACK) \
593 name##_RB_REMOVE_COLOR(head, parent, child); \
594 return (old); \
595} \
596 \
597/* Inserts a node into the RB tree */ \
598attr struct type * \
599name##_RB_INSERT(struct name *head, struct type *elm) \
600{ \
601 struct type *tmp; \
602 struct type *parent = NULL; \
603 int comp = 0; \
604 tmp = RB_ROOT(head); \
605 while (tmp) { \
606 parent = tmp; \
607 comp = (cmp)(elm, parent); \
608 if (comp < 0) \
609 tmp = RB_LEFT(tmp, field); \
610 else if (comp > 0) \
611 tmp = RB_RIGHT(tmp, field); \
612 else \
613 return (tmp); \
614 } \
615 RB_SET(elm, parent, field); \
616 if (parent != NULL) { \
617 if (comp < 0) \
618 RB_LEFT(parent, field) = elm; \
619 else \
620 RB_RIGHT(parent, field) = elm; \
621 RB_AUGMENT(parent); \
622 } else \
623 RB_ROOT(head) = elm; \
624 name##_RB_INSERT_COLOR(head, elm); \
625 return (NULL); \
626} \
627 \
628/* Finds the node with the same key as elm */ \
629attr struct type * \
630name##_RB_FIND(struct name *head, struct type *elm) \
631{ \
632 struct type *tmp = RB_ROOT(head); \
633 int comp; \
634 while (tmp) { \
635 comp = cmp(elm, tmp); \
636 if (comp < 0) \
637 tmp = RB_LEFT(tmp, field); \
638 else if (comp > 0) \
639 tmp = RB_RIGHT(tmp, field); \
640 else \
641 return (tmp); \
642 } \
643 return (NULL); \
644} \
645 \
646/* Finds the first node greater than or equal to the search key */ \
647attr struct type * \
648name##_RB_NFIND(struct name *head, struct type *elm) \
649{ \
650 struct type *tmp = RB_ROOT(head); \
651 struct type *res = NULL; \
652 int comp; \
653 while (tmp) { \
654 comp = cmp(elm, tmp); \
655 if (comp < 0) { \
656 res = tmp; \
657 tmp = RB_LEFT(tmp, field); \
658 } \
659 else if (comp > 0) \
660 tmp = RB_RIGHT(tmp, field); \
661 else \
662 return (tmp); \
663 } \
664 return (res); \
665} \
666 \
667/* ARGSUSED */ \
668attr struct type * \
669name##_RB_NEXT(struct type *elm) \
670{ \
671 if (RB_RIGHT(elm, field)) { \
672 elm = RB_RIGHT(elm, field); \
673 while (RB_LEFT(elm, field)) \
674 elm = RB_LEFT(elm, field); \
675 } else { \
676 if (RB_PARENT(elm, field) && \
677 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
678 elm = RB_PARENT(elm, field); \
679 else { \
680 while (RB_PARENT(elm, field) && \
681 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
682 elm = RB_PARENT(elm, field); \
683 elm = RB_PARENT(elm, field); \
684 } \
685 } \
686 return (elm); \
687} \
688 \
689/* ARGSUSED */ \
690attr struct type * \
691name##_RB_PREV(struct type *elm) \
692{ \
693 if (RB_LEFT(elm, field)) { \
694 elm = RB_LEFT(elm, field); \
695 while (RB_RIGHT(elm, field)) \
696 elm = RB_RIGHT(elm, field); \
697 } else { \
698 if (RB_PARENT(elm, field) && \
699 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
700 elm = RB_PARENT(elm, field); \
701 else { \
702 while (RB_PARENT(elm, field) && \
703 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
704 elm = RB_PARENT(elm, field); \
705 elm = RB_PARENT(elm, field); \
706 } \
707 } \
708 return (elm); \
709} \
710 \
711attr struct type * \
712name##_RB_MINMAX(struct name *head, int val) \
713{ \
714 struct type *tmp = RB_ROOT(head); \
715 struct type *parent = NULL; \
716 while (tmp) { \
717 parent = tmp; \
718 if (val < 0) \
719 tmp = RB_LEFT(tmp, field); \
720 else \
721 tmp = RB_RIGHT(tmp, field); \
722 } \
723 return (parent); \
726#define RB_NEGINF -1
727#define RB_INF 1
729#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
730#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
731#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
732#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
733#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
734#define RB_PREV(name, x, y) name##_RB_PREV(y)
735#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
736#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
737
738#define RB_FOREACH(x, name, head) \
739 for ((x) = RB_MIN(name, head); \
740 (x) != NULL; \
741 (x) = name##_RB_NEXT(x))
742
743#define RB_FOREACH_FROM(x, name, y) \
744 for ((x) = (y); \
745 ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
746 (x) = (y))
747
748#define RB_FOREACH_SAFE(x, name, head, y) \
749 for ((x) = RB_MIN(name, head); \
750 ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
751 (x) = (y))
752
753#define RB_FOREACH_REVERSE(x, name, head) \
754 for ((x) = RB_MAX(name, head); \
755 (x) != NULL; \
756 (x) = name##_RB_PREV(x))
757
758#define RB_FOREACH_REVERSE_FROM(x, name, y) \
759 for ((x) = (y); \
760 ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
761 (x) = (y))
762
763#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
764 for ((x) = RB_MAX(name, head); \
765 ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
766 (x) = (y))
767
768#endif /* UV_TREE_H_ */