WPILibC++ 2023.4.3
Ordering.h
Go to the documentation of this file.
1
2// This file is part of Eigen, a lightweight C++ template library
3// for linear algebra.
4//
5// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_ORDERING_H
12#define EIGEN_ORDERING_H
13
14namespace Eigen {
15
16#include "Eigen_Colamd.h"
17
18namespace internal {
19
20/** \internal
21 * \ingroup OrderingMethods_Module
22 * \param[in] A the input non-symmetric matrix
23 * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
24 * FIXME: The values should not be considered here
25 */
26template<typename MatrixType>
27void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
28{
29 MatrixType C;
30 C = A.transpose(); // NOTE: Could be costly
31 for (int i = 0; i < C.rows(); i++)
32 {
33 for (typename MatrixType::InnerIterator it(C, i); it; ++it)
34 it.valueRef() = typename MatrixType::Scalar(0);
35 }
36 symmat = C + A;
37}
38
39}
40
41/** \ingroup OrderingMethods_Module
42 * \class AMDOrdering
43 *
44 * Functor computing the \em approximate \em minimum \em degree ordering
45 * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
46 * \tparam StorageIndex The type of indices of the matrix
47 * \sa COLAMDOrdering
48 */
49template <typename StorageIndex>
51{
52 public:
54
55 /** Compute the permutation vector from a sparse matrix
56 * This routine is much faster if the input matrix is column-major
57 */
58 template <typename MatrixType>
59 void operator()(const MatrixType& mat, PermutationType& perm)
60 {
61 // Compute the symmetric pattern
64
65 // Call the AMD routine
66 //m_mat.prune(keep_diag());
68 }
69
70 /** Compute the permutation with a selfadjoint matrix */
71 template <typename SrcType, unsigned int SrcUpLo>
73 {
75
76 // Call the AMD routine
77 // m_mat.prune(keep_diag()); //Remove the diagonal elements
79 }
80};
81
82/** \ingroup OrderingMethods_Module
83 * \class NaturalOrdering
84 *
85 * Functor computing the natural ordering (identity)
86 *
87 * \note Returns an empty permutation matrix
88 * \tparam StorageIndex The type of indices of the matrix
89 */
90template <typename StorageIndex>
92{
93 public:
95
96 /** Compute the permutation vector from a column-major sparse matrix */
97 template <typename MatrixType>
98 void operator()(const MatrixType& /*mat*/, PermutationType& perm)
99 {
100 perm.resize(0);
101 }
102
103};
104
105/** \ingroup OrderingMethods_Module
106 * \class COLAMDOrdering
107 *
108 * \tparam StorageIndex The type of indices of the matrix
109 *
110 * Functor computing the \em column \em approximate \em minimum \em degree ordering
111 * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
112 */
113template<typename StorageIndex>
115{
116 public:
119
120 /** Compute the permutation vector \a perm form the sparse matrix \a mat
121 * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
122 */
123 template <typename MatrixType>
124 void operator() (const MatrixType& mat, PermutationType& perm)
125 {
126 eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
127
128 StorageIndex m = StorageIndex(mat.rows());
129 StorageIndex n = StorageIndex(mat.cols());
130 StorageIndex nnz = StorageIndex(mat.nonZeros());
131 // Get the recommended value of Alen to be used by colamd
132 StorageIndex Alen = internal::Colamd::recommended(nnz, m, n);
133 // Set the default parameters
134 double knobs [internal::Colamd::NKnobs];
135 StorageIndex stats [internal::Colamd::NStats];
137
138 IndexVector p(n+1), A(Alen);
139 for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
140 for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
141 // Call Colamd routine to compute the ordering
142 StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats);
144 eigen_assert( info && "COLAMD failed " );
145
146 perm.resize(n);
147 for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
148 }
149};
150
151} // end namespace Eigen
152
153#endif
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:1086
#define eigen_assert(x)
Definition: Macros.h:1047
Functor computing the approximate minimum degree ordering If the matrix is not structurally symmetric...
Definition: Ordering.h:51
void operator()(const SparseSelfAdjointView< SrcType, SrcUpLo > &mat, PermutationType &perm)
Compute the permutation with a selfadjoint matrix.
Definition: Ordering.h:72
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
Definition: Ordering.h:53
void operator()(const MatrixType &mat, PermutationType &perm)
Compute the permutation vector from a sparse matrix This routine is much faster if the input matrix i...
Definition: Ordering.h:59
Definition: Ordering.h:115
void operator()(const MatrixType &mat, PermutationType &perm)
Compute the permutation vector perm form the sparse matrix mat.
Definition: Ordering.h:124
Matrix< StorageIndex, Dynamic, 1 > IndexVector
Definition: Ordering.h:118
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
Definition: Ordering.h:117
Functor computing the natural ordering (identity)
Definition: Ordering.h:92
void operator()(const MatrixType &, PermutationType &perm)
Compute the permutation vector from a column-major sparse matrix.
Definition: Ordering.h:98
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
Definition: Ordering.h:94
void resize(Index newSize)
Resizes to given size.
Definition: PermutationMatrix.h:125
const IndicesType & indices() const
const version of indices().
Definition: PermutationMatrix.h:360
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar * data() const
Definition: PlainObjectBase.h:247
A versatible sparse matrix representation.
Definition: SparseMatrix.h:98
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
Definition: SparseSelfAdjointView.h:45
void ordering_helper_at_plus_a(const MatrixType &A, MatrixType &symmat)
Definition: Ordering.h:27
void minimum_degree_ordering(SparseMatrix< Scalar, ColMajor, StorageIndex > &C, PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm)
Definition: Amd.h:84
Namespace containing all symbols from the Eigen library.
Definition: MatrixExponential.h:16
const int NKnobs
Definition: Eigen_Colamd.h:65
IndexType recommended(IndexType nnz, IndexType n_row, IndexType n_col)
Returns the recommended value of Alen.
Definition: Eigen_Colamd.h:277
static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[NKnobs], IndexType stats[NStats])
Computes a column ordering using the column approximate minimum degree ordering.
Definition: Eigen_Colamd.h:342
const int NStats
Definition: Eigen_Colamd.h:68
static void set_defaults(double knobs[NKnobs])
set default parameters The use of this routine is optional.
Definition: Eigen_Colamd.h:306
Definition: Eigen_Colamd.h:50