WPILibC++ 2023.4.3-108-ge5452e3
|
Go to the source code of this file.
Namespaces | |
namespace | internal |
Functions | |
template<typename T > | |
constexpr T | internal::tan_series_exp_long (const T z) noexcept |
template<typename T > | |
constexpr T | internal::tan_series_exp (const T x) noexcept |
template<typename T > | |
constexpr T | internal::tan_cf_recur (const T xx, const int depth, const int max_depth) noexcept |
template<typename T > | |
constexpr T | internal::tan_cf_main (const T x) noexcept |
template<typename T > | |
constexpr T | internal::tan_begin (const T x, const int count=0) noexcept |
template<typename T > | |
constexpr T | internal::tan_check (const T x) noexcept |
template<typename T > | |
constexpr return_t< T > | tan (const T x) noexcept |
Compile-time tangent function. More... | |
|
constexprnoexcept |
Compile-time tangent function.
x | a real-valued input. |
\[ \tan(x) = \dfrac{x}{1 - \dfrac{x^2}{3 - \dfrac{x^2}{5 - \ddots}}} \]
To deal with a singularity at \( \pi / 2 \), the following expansion is employed:\[ \tan(x) = - \frac{1}{x-\pi/2} - \sum_{k=1}^\infty \frac{(-1)^k 2^{2k} B_{2k}}{(2k)!} (x - \pi/2)^{2k - 1} \]
where \( B_n \) is the n-th Bernoulli number.