WPILibC++ 2023.4.3-108-ge5452e3
SelfAdjointView.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SELFADJOINTMATRIX_H
11#define EIGEN_SELFADJOINTMATRIX_H
12
13namespace Eigen {
14
15/** \class SelfAdjointView
16 * \ingroup Core_Module
17 *
18 *
19 * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
20 *
21 * \param MatrixType the type of the dense matrix storing the coefficients
22 * \param TriangularPart can be either \c #Lower or \c #Upper
23 *
24 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
25 * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
26 * and most of the time this is the only way that it is used.
27 *
28 * \sa class TriangularBase, MatrixBase::selfadjointView()
29 */
30
31namespace internal {
32template<typename MatrixType, unsigned int UpLo>
33struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
34{
37 typedef MatrixType ExpressionType;
38 typedef typename MatrixType::PlainObject FullMatrixType;
39 enum {
40 Mode = UpLo | SelfAdjoint,
42 Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit)
43 & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
44 };
45};
46}
47
48
49template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
50 : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
51{
52 public:
53
54 typedef _MatrixType MatrixType;
59
60 /** \brief The type of coefficients in this matrix */
62 typedef typename MatrixType::StorageIndex StorageIndex;
65
66 enum {
69 TransposeMode = ((int(Mode) & int(Upper)) ? Lower : 0) | ((int(Mode) & int(Lower)) ? Upper : 0)
70 };
71 typedef typename MatrixType::PlainObject PlainObject;
72
74 explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
75 {
76 EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY);
77 }
78
80 inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
82 inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
84 inline Index outerStride() const EIGEN_NOEXCEPT { return m_matrix.outerStride(); }
86 inline Index innerStride() const EIGEN_NOEXCEPT { return m_matrix.innerStride(); }
87
88 /** \sa MatrixBase::coeff()
89 * \warning the coordinates must fit into the referenced triangular part
90 */
92 inline Scalar coeff(Index row, Index col) const
93 {
95 return m_matrix.coeff(row, col);
96 }
97
98 /** \sa MatrixBase::coeffRef()
99 * \warning the coordinates must fit into the referenced triangular part
100 */
103 {
106 return m_matrix.coeffRef(row, col);
107 }
108
109 /** \internal */
112
117
118 /** Efficient triangular matrix times vector/matrix product */
119 template<typename OtherDerived>
123 {
124 return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
125 }
126
127 /** Efficient vector/matrix times triangular matrix product */
128 template<typename OtherDerived> friend
132 {
133 return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
134 }
135
136 friend EIGEN_DEVICE_FUNC
138 operator*(const Scalar& s, const SelfAdjointView& mat)
139 {
140 return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
141 }
142
143 /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
144 * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
145 * \returns a reference to \c *this
146 *
147 * The vectors \a u and \c v \b must be column vectors, however they can be
148 * a adjoint expression without any overhead. Only the meaningful triangular
149 * part of the matrix is updated, the rest is left unchanged.
150 *
151 * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
152 */
153 template<typename DerivedU, typename DerivedV>
156
157 /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
158 * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
159 *
160 * \returns a reference to \c *this
161 *
162 * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
163 * call this function with u.adjoint().
164 *
165 * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
166 */
167 template<typename DerivedU>
170
171 /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part
172 *
173 * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
174 * \c #Lower, \c #StrictlyLower, \c #UnitLower.
175 *
176 * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression,
177 * otherwise, the nested expression is first transposed, thus returning a \c TriangularView<Transpose<MatrixType>> object.
178 *
179 * \sa MatrixBase::triangularView(), class TriangularView
180 */
181 template<unsigned int TriMode>
183 typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
187 {
188 typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix);
189 typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1);
190 return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
193 }
194
196 /** \sa MatrixBase::conjugate() const */
198 inline const ConjugateReturnType conjugate() const
199 { return ConjugateReturnType(m_matrix.conjugate()); }
200
201 /** \returns an expression of the complex conjugate of \c *this if Cond==true,
202 * returns \c *this otherwise.
203 */
204 template<bool Cond>
208 {
210 return ReturnType(m_matrix.template conjugateIf<Cond>());
211 }
212
214 /** \sa MatrixBase::adjoint() const */
216 inline const AdjointReturnType adjoint() const
217 { return AdjointReturnType(m_matrix.adjoint()); }
218
220 /** \sa MatrixBase::transpose() */
223 {
225 typename MatrixType::TransposeReturnType tmp(m_matrix);
226 return TransposeReturnType(tmp);
227 }
228
230 /** \sa MatrixBase::transpose() const */
233 {
234 return ConstTransposeReturnType(m_matrix.transpose());
235 }
236
237 /** \returns a const expression of the main diagonal of the matrix \c *this
238 *
239 * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator.
240 *
241 * \sa MatrixBase::diagonal(), class Diagonal */
243 typename MatrixType::ConstDiagonalReturnType diagonal() const
244 {
245 return typename MatrixType::ConstDiagonalReturnType(m_matrix);
246 }
247
248/////////// Cholesky module ///////////
249
250 const LLT<PlainObject, UpLo> llt() const;
251 const LDLT<PlainObject, UpLo> ldlt() const;
252
253/////////// Eigenvalue module ///////////
254
255 /** Real part of #Scalar */
257 /** Return type of eigenvalues() */
259
263 RealScalar operatorNorm() const;
264
265 protected:
267};
268
269
270// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
271// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
272// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
273// {
274// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
275// }
276
277// selfadjoint to dense matrix
278
279namespace internal {
280
281// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
282// in the future selfadjoint-ness should be defined by the expression traits
283// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
284template<typename MatrixType, unsigned int Mode>
285struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
286{
289};
290
291template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
292class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
293 : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
294{
295protected:
297 typedef typename Base::DstXprType DstXprType;
298 typedef typename Base::SrcXprType SrcXprType;
299 using Base::m_dst;
300 using Base::m_src;
301 using Base::m_functor;
302public:
303
306 typedef typename Base::Scalar Scalar;
308
309
311 : Base(dst, src, func, dstExpr)
312 {}
313
315 {
317 Scalar tmp = m_src.coeff(row,col);
318 m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
319 m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
320 }
321
323 {
324 Base::assignCoeff(id,id);
325 }
326
328 { eigen_internal_assert(false && "should never be called"); }
329};
330
331} // end namespace internal
332
333/***************************************************************************
334* Implementation of MatrixBase methods
335***************************************************************************/
336
337/** This is the const version of MatrixBase::selfadjointView() */
338template<typename Derived>
339template<unsigned int UpLo>
340EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
342{
343 return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived());
344}
345
346/** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix
347 *
348 * The parameter \a UpLo can be either \c #Upper or \c #Lower
349 *
350 * Example: \include MatrixBase_selfadjointView.cpp
351 * Output: \verbinclude MatrixBase_selfadjointView.out
352 *
353 * \sa class SelfAdjointView
354 */
355template<typename Derived>
356template<unsigned int UpLo>
359{
360 return typename SelfAdjointViewReturnType<UpLo>::Type(derived());
361}
362
363} // end namespace Eigen
364
365#endif // EIGEN_SELFADJOINTMATRIX_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:1097
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RowXpr row(Index i)
This is the const version of row(). *‍/.
Definition: BlockMethods.h:1118
#define eigen_internal_assert(x)
Definition: Macros.h:1053
#define EIGEN_NOEXCEPT
Definition: Macros.h:1428
#define EIGEN_CONSTEXPR
Definition: Macros.h:797
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(SCALAR, EXPR, OPNAME)
Definition: Macros.h:1361
#define EIGEN_STATIC_ASSERT_LVALUE(Derived)
Definition: StaticAssert.h:202
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
Robust Cholesky decomposition of a matrix with pivoting.
Definition: LDLT.h:61
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:68
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type selfadjointView()
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:75
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
Definition: SelfAdjointView.h:51
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: SelfAdjointView.h:82
SelfAdjointView< typename internal::add_const< MatrixType >::type, UpLo > ConstSelfAdjointView
Definition: SelfAdjointView.h:64
friend EIGEN_DEVICE_FUNC const Product< OtherDerived, SelfAdjointView > operator*(const MatrixBase< OtherDerived > &lhs, const SelfAdjointView &rhs)
Efficient vector/matrix times triangular matrix product.
Definition: SelfAdjointView.h:131
EIGEN_DEVICE_FUNC internal::conditional<(TriMode &(Upper|Lower))==(UpLo &(Upper|Lower)), TriangularView< MatrixType, TriMode >, TriangularView< typenameMatrixType::AdjointReturnType, TriMode > >::type triangularView() const
Definition: SelfAdjointView.h:186
EIGEN_DEVICE_FUNC SelfAdjointView & rankUpdate(const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, const Scalar &alpha=Scalar(1))
Perform a symmetric rank 2 update of the selfadjoint matrix *this: .
internal::remove_all< typenameMatrixType::ConjugateReturnType >::type MatrixConjugateReturnType
Definition: SelfAdjointView.h:63
friend EIGEN_DEVICE_FUNC const SelfAdjointView< const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, MatrixType, product), UpLo > operator*(const Scalar &s, const SelfAdjointView &mat)
Definition: SelfAdjointView.h:138
TriangularBase< SelfAdjointView > Base
Definition: SelfAdjointView.h:55
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const
Definition: SelfAdjointView.h:216
EIGEN_DEVICE_FUNC SelfAdjointView & rankUpdate(const MatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1))
Perform a symmetric rank K update of the selfadjoint matrix *this: where u is a vector or matrix.
const LLT< PlainObject, UpLo > llt() const
\cholesky_module
Definition: LLT.h:551
EIGEN_DEVICE_FUNC SelfAdjointView(MatrixType &matrix)
Definition: SelfAdjointView.h:74
internal::traits< SelfAdjointView >::MatrixTypeNestedCleaned MatrixTypeNestedCleaned
Definition: SelfAdjointView.h:57
MatrixType::StorageIndex StorageIndex
Definition: SelfAdjointView.h:62
EIGEN_DEVICE_FUNC const Product< SelfAdjointView, OtherDerived > operator*(const MatrixBase< OtherDerived > &rhs) const
Efficient triangular matrix times vector/matrix product.
Definition: SelfAdjointView.h:122
const LDLT< PlainObject, UpLo > ldlt() const
\cholesky_module
Definition: LDLT.h:670
EIGEN_DEVICE_FUNC RealScalar operatorNorm() const
Computes the L2 operator norm.
Definition: MatrixBaseEigenvalues.h:151
EIGEN_DEVICE_FUNC EigenvaluesReturnType eigenvalues() const
Computes the eigenvalues of a matrix.
Definition: MatrixBaseEigenvalues.h:88
EIGEN_DEVICE_FUNC MatrixTypeNestedCleaned & nestedExpression()
Definition: SelfAdjointView.h:116
SelfAdjointView< const typename MatrixType::ConstTransposeReturnType, TransposeMode > ConstTransposeReturnType
Definition: SelfAdjointView.h:229
internal::traits< SelfAdjointView >::MatrixTypeNested MatrixTypeNested
Definition: SelfAdjointView.h:56
Matrix< RealScalar, internal::traits< MatrixType >::ColsAtCompileTime, 1 > EigenvaluesReturnType
Return type of eigenvalues()
Definition: SelfAdjointView.h:258
SelfAdjointView< typename MatrixType::TransposeReturnType, TransposeMode > TransposeReturnType
Definition: SelfAdjointView.h:219
_MatrixType MatrixType
Definition: SelfAdjointView.h:54
EIGEN_DEVICE_FUNC const ConstTransposeReturnType transpose() const
Definition: SelfAdjointView.h:232
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerStride() const EIGEN_NOEXCEPT
Definition: SelfAdjointView.h:84
SelfAdjointView< const MatrixConjugateReturnType, UpLo > ConjugateReturnType
Definition: SelfAdjointView.h:195
SelfAdjointView< const typename MatrixType::AdjointReturnType, TransposeMode > AdjointReturnType
Definition: SelfAdjointView.h:213
MatrixTypeNestedCleaned NestedExpression
Definition: SelfAdjointView.h:58
@ TransposeMode
Definition: SelfAdjointView.h:69
@ Flags
Definition: SelfAdjointView.h:68
@ Mode
Definition: SelfAdjointView.h:67
EIGEN_DEVICE_FUNC Scalar & coeffRef(Index row, Index col)
Definition: SelfAdjointView.h:102
MatrixTypeNested m_matrix
Definition: SelfAdjointView.h:266
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: SelfAdjointView.h:80
EIGEN_DEVICE_FUNC internal::conditional< Cond, ConjugateReturnType, ConstSelfAdjointView >::type conjugateIf() const
Definition: SelfAdjointView.h:207
EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned & nestedExpression() const
Definition: SelfAdjointView.h:114
EIGEN_DEVICE_FUNC TransposeReturnType transpose()
Definition: SelfAdjointView.h:222
EIGEN_DEVICE_FUNC MatrixType::ConstDiagonalReturnType diagonal() const
Definition: SelfAdjointView.h:243
EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
Definition: SelfAdjointView.h:92
EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned & _expression() const
Definition: SelfAdjointView.h:111
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerStride() const EIGEN_NOEXCEPT
Definition: SelfAdjointView.h:86
EIGEN_DEVICE_FUNC const ConjugateReturnType conjugate() const
Definition: SelfAdjointView.h:198
MatrixType::PlainObject PlainObject
Definition: SelfAdjointView.h:71
internal::traits< SelfAdjointView >::Scalar Scalar
The type of coefficients in this matrix.
Definition: SelfAdjointView.h:61
NumTraits< Scalar >::Real RealScalar
Real part of Scalar.
Definition: SelfAdjointView.h:256
Base class for triangular part in a matrix.
Definition: TriangularMatrix.h:28
void check_coordinates_internal(Index, Index) const
Definition: TriangularMatrix.h:146
Expression of a triangular part in a matrix.
Definition: TriangularMatrix.h:189
Definition: AssignEvaluator.h:619
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col)
Assign src(row,col) to dst(row,col) through the assignment functor.
Definition: AssignEvaluator.h:652
EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType &dstExpr)
Definition: SelfAdjointView.h:310
generic_dense_assignment_kernel< DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version > Base
Definition: SelfAdjointView.h:296
Definition: TriangularMatrix.h:755
type
Definition: core.h:575
@ SelfAdjoint
Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint.
Definition: Constants.h:225
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
const unsigned int PacketAccessBit
Short version: means the expression might be vectorized.
Definition: Constants.h:94
const unsigned int LinearAccessBit
Short version: means the expression can be seen as 1D vector.
Definition: Constants.h:130
const unsigned int DirectAccessBit
Means that the underlying array of coefficients can be directly accessed as a plain strided array.
Definition: Constants.h:155
const unsigned int LvalueBit
Means the expression has a coeffRef() method, i.e.
Definition: Constants.h:144
Type
Definition: Constants.h:471
Namespace containing all symbols from the Eigen library.
Definition: Core:141
const unsigned int HereditaryBits
Definition: Constants.h:195
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: Constants.h:534
Definition: Constants.h:542
Definition: Meta.h:109
Definition: AssignEvaluator.h:29
SelfAdjointShape Shape
Definition: SelfAdjointView.h:288
storage_kind_to_evaluator_kind< typenameMatrixType::StorageKind >::Kind Kind
Definition: SelfAdjointView.h:287
Definition: CoreEvaluators.h:80
Definition: XprHelper.h:660
Definition: XprHelper.h:417
T type
Definition: Meta.h:126
MatrixType::PlainObject FullMatrixType
Definition: SelfAdjointView.h:38
ref_selector< MatrixType >::non_const_type MatrixTypeNested
Definition: SelfAdjointView.h:35
remove_all< MatrixTypeNested >::type MatrixTypeNestedCleaned
Definition: SelfAdjointView.h:36
MatrixType ExpressionType
Definition: SelfAdjointView.h:37
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96