WPILibC++ 2023.4.3-108-ge5452e3
SelfAdjointEigenSolver.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12#define EIGEN_SELFADJOINTEIGENSOLVER_H
13
15
16namespace Eigen {
17
18template<typename _MatrixType>
19class GeneralizedSelfAdjointEigenSolver;
20
21namespace internal {
22template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
24template<typename MatrixType, typename DiagType, typename SubDiagType>
26ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27}
28
29/** \eigenvalues_module \ingroup Eigenvalues_Module
30 *
31 *
32 * \class SelfAdjointEigenSolver
33 *
34 * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35 *
36 * \tparam _MatrixType the type of the matrix of which we are computing the
37 * eigendecomposition; this is expected to be an instantiation of the Matrix
38 * class template.
39 *
40 * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41 * matrices, this means that the matrix is symmetric: it equals its
42 * transpose. This class computes the eigenvalues and eigenvectors of a
43 * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44 * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45 * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46 * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47 * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48 * eigendecomposition.
49 *
50 * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51 * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52 * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53 * equal to its transpose, \f$ V^{-1} = V^T \f$.
54 *
55 * The algorithm exploits the fact that the matrix is selfadjoint, making it
56 * faster and more accurate than the general purpose eigenvalue algorithms
57 * implemented in EigenSolver and ComplexEigenSolver.
58 *
59 * Only the \b lower \b triangular \b part of the input matrix is referenced.
60 *
61 * Call the function compute() to compute the eigenvalues and eigenvectors of
62 * a given matrix. Alternatively, you can use the
63 * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64 * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65 * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66 * and eigenvectors() functions.
67 *
68 * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69 * contains an example of the typical use of this class.
70 *
71 * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72 * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73 *
74 * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75 */
76template<typename _MatrixType> class SelfAdjointEigenSolver
77{
78 public:
79
80 typedef _MatrixType MatrixType;
81 enum {
82 Size = MatrixType::RowsAtCompileTime,
83 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84 Options = MatrixType::Options,
85 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86 };
87
88 /** \brief Scalar type for matrices of type \p _MatrixType. */
89 typedef typename MatrixType::Scalar Scalar;
90 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
93
94 /** \brief Real scalar type for \p _MatrixType.
95 *
96 * This is just \c Scalar if #Scalar is real (e.g., \c float or
97 * \c double), and the type of the real part of \c Scalar if #Scalar is
98 * complex.
99 */
101
103
104 /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105 *
106 * This is a column vector with entries of type #RealScalar.
107 * The length of the vector is the size of \p _MatrixType.
108 */
109 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
112
113 /** \brief Default constructor for fixed-size matrices.
114 *
115 * The default constructor is useful in cases in which the user intends to
116 * perform decompositions via compute(). This constructor
117 * can only be used if \p _MatrixType is a fixed-size matrix; use
118 * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119 *
120 * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121 * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122 */
125 : m_eivec(),
126 m_eivalues(),
127 m_subdiag(),
128 m_hcoeffs(),
129 m_info(InvalidInput),
130 m_isInitialized(false),
131 m_eigenvectorsOk(false)
132 { }
133
134 /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135 *
136 * \param [in] size Positive integer, size of the matrix whose
137 * eigenvalues and eigenvectors will be computed.
138 *
139 * This constructor is useful for dynamic-size matrices, when the user
140 * intends to perform decompositions via compute(). The \p size
141 * parameter is only used as a hint. It is not an error to give a wrong
142 * \p size, but it may impair performance.
143 *
144 * \sa compute() for an example
145 */
148 : m_eivec(size, size),
150 m_subdiag(size > 1 ? size - 1 : 1),
151 m_hcoeffs(size > 1 ? size - 1 : 1),
152 m_isInitialized(false),
153 m_eigenvectorsOk(false)
154 {}
155
156 /** \brief Constructor; computes eigendecomposition of given matrix.
157 *
158 * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159 * be computed. Only the lower triangular part of the matrix is referenced.
160 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161 *
162 * This constructor calls compute(const MatrixType&, int) to compute the
163 * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164 * \p options equals #ComputeEigenvectors.
165 *
166 * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167 * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168 *
169 * \sa compute(const MatrixType&, int)
170 */
171 template<typename InputType>
174 : m_eivec(matrix.rows(), matrix.cols()),
175 m_eivalues(matrix.cols()),
176 m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177 m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178 m_isInitialized(false),
179 m_eigenvectorsOk(false)
180 {
181 compute(matrix.derived(), options);
182 }
183
184 /** \brief Computes eigendecomposition of given matrix.
185 *
186 * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187 * be computed. Only the lower triangular part of the matrix is referenced.
188 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189 * \returns Reference to \c *this
190 *
191 * This function computes the eigenvalues of \p matrix. The eigenvalues()
192 * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193 * then the eigenvectors are also computed and can be retrieved by
194 * calling eigenvectors().
195 *
196 * This implementation uses a symmetric QR algorithm. The matrix is first
197 * reduced to tridiagonal form using the Tridiagonalization class. The
198 * tridiagonal matrix is then brought to diagonal form with implicit
199 * symmetric QR steps with Wilkinson shift. Details can be found in
200 * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201 *
202 * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203 * are required and \f$ 4n^3/3 \f$ if they are not required.
204 *
205 * This method reuses the memory in the SelfAdjointEigenSolver object that
206 * was allocated when the object was constructed, if the size of the
207 * matrix does not change.
208 *
209 * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210 * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211 *
212 * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213 */
214 template<typename InputType>
217
218 /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219 *
220 * This is a variant of compute(const MatrixType&, int options) which
221 * directly solves the underlying polynomial equation.
222 *
223 * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224 *
225 * This method is usually significantly faster than the QR iterative algorithm
226 * but it might also be less accurate. It is also worth noting that
227 * for 3x3 matrices it involves trigonometric operations which are
228 * not necessarily available for all scalar types.
229 *
230 * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231 * - double: 1e-8
232 * - float: 1e-3
233 *
234 * \sa compute(const MatrixType&, int options)
235 */
238
239 /**
240 *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241 *
242 * \param[in] diag The vector containing the diagonal of the matrix.
243 * \param[in] subdiag The subdiagonal of the matrix.
244 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245 * \returns Reference to \c *this
246 *
247 * This function assumes that the matrix has been reduced to tridiagonal form.
248 *
249 * \sa compute(const MatrixType&, int) for more information
250 */
252
253 /** \brief Returns the eigenvectors of given matrix.
254 *
255 * \returns A const reference to the matrix whose columns are the eigenvectors.
256 *
257 * \pre The eigenvectors have been computed before.
258 *
259 * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261 * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262 * this object was used to solve the eigenproblem for the selfadjoint
263 * matrix \f$ A \f$, then the matrix returned by this function is the
264 * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265 *
266 * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267 * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268 * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269 * equal to its transpose, \f$ V^{-1} = V^T \f$.
270 *
271 * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272 * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273 *
274 * \sa eigenvalues()
275 */
278 {
279 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281 return m_eivec;
282 }
283
284 /** \brief Returns the eigenvalues of given matrix.
285 *
286 * \returns A const reference to the column vector containing the eigenvalues.
287 *
288 * \pre The eigenvalues have been computed before.
289 *
290 * The eigenvalues are repeated according to their algebraic multiplicity,
291 * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292 * are sorted in increasing order.
293 *
294 * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295 * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296 *
297 * \sa eigenvectors(), MatrixBase::eigenvalues()
298 */
301 {
302 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303 return m_eivalues;
304 }
305
306 /** \brief Computes the positive-definite square root of the matrix.
307 *
308 * \returns the positive-definite square root of the matrix
309 *
310 * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311 * have been computed before.
312 *
313 * The square root of a positive-definite matrix \f$ A \f$ is the
314 * positive-definite matrix whose square equals \f$ A \f$. This function
315 * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316 * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317 *
318 * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319 * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320 *
321 * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322 */
325 {
326 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329 }
330
331 /** \brief Computes the inverse square root of the matrix.
332 *
333 * \returns the inverse positive-definite square root of the matrix
334 *
335 * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336 * have been computed before.
337 *
338 * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339 * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340 * cheaper than first computing the square root with operatorSqrt() and
341 * then its inverse with MatrixBase::inverse().
342 *
343 * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344 * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345 *
346 * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347 */
350 {
351 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354 }
355
356 /** \brief Reports whether previous computation was successful.
357 *
358 * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359 */
362 {
363 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364 return m_info;
365 }
366
367 /** \brief Maximum number of iterations.
368 *
369 * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370 * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371 */
372 static const int m_maxIterations = 30;
373
374 protected:
375 static EIGEN_DEVICE_FUNC
377 {
379 }
380
388};
389
390namespace internal {
391/** \internal
392 *
393 * \eigenvalues_module \ingroup Eigenvalues_Module
394 *
395 * Performs a QR step on a tridiagonal symmetric matrix represented as a
396 * pair of two vectors \a diag and \a subdiag.
397 *
398 * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399 * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400 * \param start starting index of the submatrix to work on
401 * \param end last+1 index of the submatrix to work on
402 * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403 * \param n size of the input matrix
404 *
405 * For compilation efficiency reasons, this procedure does not use eigen expression
406 * for its arguments.
407 *
408 * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409 * "implicit symmetric QR step with Wilkinson shift"
410 */
411template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
413static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414}
415
416template<typename MatrixType>
417template<typename InputType>
419SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420::compute(const EigenBase<InputType>& a_matrix, int options)
421{
422 check_template_parameters();
423
424 const InputType &matrix(a_matrix.derived());
425
427 eigen_assert(matrix.cols() == matrix.rows());
428 eigen_assert((options&~(EigVecMask|GenEigMask))==0
429 && (options&EigVecMask)!=EigVecMask
430 && "invalid option parameter");
431 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432 Index n = matrix.cols();
433 m_eivalues.resize(n,1);
434
435 if(n==1)
436 {
437 m_eivec = matrix;
438 m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439 if(computeEigenvectors)
440 m_eivec.setOnes(n,n);
441 m_info = Success;
442 m_isInitialized = true;
443 m_eigenvectorsOk = computeEigenvectors;
444 return *this;
445 }
446
447 // declare some aliases
448 RealVectorType& diag = m_eivalues;
449 EigenvectorsType& mat = m_eivec;
450
451 // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452 mat = matrix.template triangularView<Lower>();
453 RealScalar scale = mat.cwiseAbs().maxCoeff();
454 if(scale==RealScalar(0)) scale = RealScalar(1);
455 mat.template triangularView<Lower>() /= scale;
456 m_subdiag.resize(n-1);
457 m_hcoeffs.resize(n-1);
458 internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
460 m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
462 // scale back the eigen values
463 m_eivalues *= scale;
464
465 m_isInitialized = true;
466 m_eigenvectorsOk = computeEigenvectors;
467 return *this;
468}
469
470template<typename MatrixType>
472::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473{
474 //TODO : Add an option to scale the values beforehand
475 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
477 m_eivalues = diag;
478 m_subdiag = subdiag;
479 if (computeEigenvectors)
480 {
481 m_eivec.setIdentity(diag.size(), diag.size());
482 }
483 m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
485 m_isInitialized = true;
486 m_eigenvectorsOk = computeEigenvectors;
487 return *this;
488}
489
490namespace internal {
491/**
492 * \internal
493 * \brief Compute the eigendecomposition from a tridiagonal matrix
494 *
495 * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496 * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497 * \param[in] maxIterations : the maximum number of iterations
498 * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499 * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500 * \returns \c Success or \c NoConvergence
501 */
502template<typename MatrixType, typename DiagType, typename SubDiagType>
504ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505{
506 ComputationInfo info;
507 typedef typename MatrixType::Scalar Scalar;
508
509 Index n = diag.size();
510 Index end = n-1;
511 Index start = 0;
512 Index iter = 0; // total number of iterations
513
514 typedef typename DiagType::RealScalar RealScalar;
515 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516 const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517 while (end>0)
518 {
519 for (Index i = start; i<end; ++i) {
520 if (numext::abs(subdiag[i]) < considerAsZero) {
521 subdiag[i] = RealScalar(0);
522 } else {
523 // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524 // Scaled to prevent underflows.
525 const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526 if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527 subdiag[i] = RealScalar(0);
528 }
529 }
530 }
531
532 // find the largest unreduced block at the end of the matrix.
533 while (end>0 && subdiag[end-1]==RealScalar(0))
534 {
535 end--;
536 }
537 if (end<=0)
538 break;
539
540 // if we spent too many iterations, we give up
541 iter++;
542 if(iter > maxIterations * n) break;
543
544 start = end - 1;
545 while (start>0 && subdiag[start-1]!=0)
546 start--;
547
548 internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549 }
550 if (iter <= maxIterations * n)
551 info = Success;
552 else
553 info = NoConvergence;
554
555 // Sort eigenvalues and corresponding vectors.
556 // TODO make the sort optional ?
557 // TODO use a better sort algorithm !!
558 if (info == Success)
559 {
560 for (Index i = 0; i < n-1; ++i)
561 {
562 Index k;
563 diag.segment(i,n-i).minCoeff(&k);
564 if (k > 0)
565 {
566 numext::swap(diag[i], diag[k+i]);
567 if(computeEigenvectors)
568 eivec.col(i).swap(eivec.col(k+i));
569 }
570 }
571 }
572 return info;
573}
574
575template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576{
578 static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579 { eig.compute(A,options); }
580};
581
582template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583{
584 typedef typename SolverType::MatrixType MatrixType;
585 typedef typename SolverType::RealVectorType VectorType;
586 typedef typename SolverType::Scalar Scalar;
587 typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
589
590 /** \internal
591 * Computes the roots of the characteristic polynomial of \a m.
592 * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593 */
595 static inline void computeRoots(const MatrixType& m, VectorType& roots)
596 {
601 const Scalar s_inv3 = Scalar(1)/Scalar(3);
602 const Scalar s_sqrt3 = sqrt(Scalar(3));
603
604 // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605 // eigenvalues are the roots to this equation, all guaranteed to be
606 // real-valued, because the matrix is symmetric.
607 Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608 Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609 Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
611 // Construct the parameters used in classifying the roots of the equation
612 // and in solving the equation for the roots in closed form.
613 Scalar c2_over_3 = c2*s_inv3;
614 Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615 a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
617 Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
619 Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620 q = numext::maxi(q, Scalar(0));
621
622 // Compute the eigenvalues by solving for the roots of the polynomial.
623 Scalar rho = sqrt(a_over_3);
624 Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625 Scalar cos_theta = cos(theta);
626 Scalar sin_theta = sin(theta);
627 // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628 roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629 roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630 roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631 }
632
634 static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635 {
638 Index i0;
639 // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640 mat.diagonal().cwiseAbs().maxCoeff(&i0);
641 // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642 // so let's save it:
643 representative = mat.col(i0);
644 Scalar n0, n1;
645 VectorType c0, c1;
646 n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647 n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648 if(n0>n1) res = c0/sqrt(n0);
649 else res = c1/sqrt(n1);
650
651 return true;
652 }
653
655 static inline void run(SolverType& solver, const MatrixType& mat, int options)
656 {
657 eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658 eigen_assert((options&~(EigVecMask|GenEigMask))==0
659 && (options&EigVecMask)!=EigVecMask
660 && "invalid option parameter");
661 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
663 EigenvectorsType& eivecs = solver.m_eivec;
664 VectorType& eivals = solver.m_eivalues;
665
666 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667 Scalar shift = mat.trace() / Scalar(3);
668 // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669 MatrixType scaledMat = mat.template selfadjointView<Lower>();
670 scaledMat.diagonal().array() -= shift;
671 Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672 if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
674 // compute the eigenvalues
675 computeRoots(scaledMat,eivals);
676
677 // compute the eigenvectors
678 if(computeEigenvectors)
679 {
680 if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681 {
682 // All three eigenvalues are numerically the same
683 eivecs.setIdentity();
684 }
685 else
686 {
687 MatrixType tmp;
688 tmp = scaledMat;
689
690 // Compute the eigenvector of the most distinct eigenvalue
691 Scalar d0 = eivals(2) - eivals(1);
692 Scalar d1 = eivals(1) - eivals(0);
693 Index k(0), l(2);
694 if(d0 > d1)
695 {
696 numext::swap(k,l);
697 d0 = d1;
698 }
699
700 // Compute the eigenvector of index k
701 {
702 tmp.diagonal().array () -= eivals(k);
703 // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704 extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705 }
706
707 // Compute eigenvector of index l
709 {
710 // If d0 is too small, then the two other eigenvalues are numerically the same,
711 // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712 eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713 eivecs.col(l).normalize();
714 }
715 else
716 {
717 tmp = scaledMat;
718 tmp.diagonal().array () -= eivals(l);
719
720 VectorType dummy;
721 extract_kernel(tmp, eivecs.col(l), dummy);
722 }
723
724 // Compute last eigenvector from the other two
725 eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726 }
727 }
728
729 // Rescale back to the original size.
730 eivals *= scale;
731 eivals.array() += shift;
732
733 solver.m_info = Success;
734 solver.m_isInitialized = true;
735 solver.m_eigenvectorsOk = computeEigenvectors;
736 }
737};
738
739// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740template<typename SolverType>
741struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742{
743 typedef typename SolverType::MatrixType MatrixType;
744 typedef typename SolverType::RealVectorType VectorType;
745 typedef typename SolverType::Scalar Scalar;
746 typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
749 static inline void computeRoots(const MatrixType& m, VectorType& roots)
750 {
752 const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753 const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754 roots(0) = t1 - t0;
755 roots(1) = t1 + t0;
756 }
757
759 static inline void run(SolverType& solver, const MatrixType& mat, int options)
760 {
763
764 eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765 eigen_assert((options&~(EigVecMask|GenEigMask))==0
766 && (options&EigVecMask)!=EigVecMask
767 && "invalid option parameter");
768 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
770 EigenvectorsType& eivecs = solver.m_eivec;
771 VectorType& eivals = solver.m_eivalues;
772
773 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774 Scalar shift = mat.trace() / Scalar(2);
775 MatrixType scaledMat = mat;
776 scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777 scaledMat.diagonal().array() -= shift;
778 Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779 if(scale > Scalar(0))
780 scaledMat /= scale;
781
782 // Compute the eigenvalues
783 computeRoots(scaledMat,eivals);
784
785 // compute the eigen vectors
786 if(computeEigenvectors)
787 {
788 if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789 {
790 eivecs.setIdentity();
791 }
792 else
793 {
794 scaledMat.diagonal().array () -= eivals(1);
795 Scalar a2 = numext::abs2(scaledMat(0,0));
796 Scalar c2 = numext::abs2(scaledMat(1,1));
797 Scalar b2 = numext::abs2(scaledMat(1,0));
798 if(a2>c2)
799 {
800 eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801 eivecs.col(1) /= sqrt(a2+b2);
802 }
803 else
804 {
805 eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806 eivecs.col(1) /= sqrt(c2+b2);
807 }
808
809 eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810 }
811 }
812
813 // Rescale back to the original size.
814 eivals *= scale;
815 eivals.array() += shift;
816
817 solver.m_info = Success;
818 solver.m_isInitialized = true;
819 solver.m_eigenvectorsOk = computeEigenvectors;
820 }
821};
822
823}
824
825template<typename MatrixType>
827SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828::computeDirect(const MatrixType& matrix, int options)
829{
831 return *this;
832}
833
834namespace internal {
835
836// Francis implicit QR step.
837template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
839static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840{
841 // Wilkinson Shift.
842 RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843 RealScalar e = subdiag[end-1];
844 // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845 // underflow thus leading to inf/NaN values when using the following commented code:
846 // RealScalar e2 = numext::abs2(subdiag[end-1]);
847 // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848 // This explain the following, somewhat more complicated, version:
849 RealScalar mu = diag[end];
850 if(td==RealScalar(0)) {
851 mu -= numext::abs(e);
852 } else if (e != RealScalar(0)) {
853 const RealScalar e2 = numext::abs2(e);
854 const RealScalar h = numext::hypot(td,e);
855 if(e2 == RealScalar(0)) {
856 mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857 } else {
858 mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859 }
860 }
861
862 RealScalar x = diag[start] - mu;
863 RealScalar z = subdiag[start];
864 // If z ever becomes zero, the Givens rotation will be the identity and
865 // z will stay zero for all future iterations.
866 for (Index k = start; k < end && z != RealScalar(0); ++k)
867 {
869 rot.makeGivens(x, z);
870
871 // do T = G' T G
872 RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873 RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
875 diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876 diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877 subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
879 if (k > start)
880 subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
882 // "Chasing the bulge" to return to triangular form.
883 x = subdiag[k];
884 if (k < end - 1)
885 {
886 z = -rot.s() * subdiag[k+1];
887 subdiag[k + 1] = rot.c() * subdiag[k+1];
888 }
889
890 // apply the givens rotation to the unit matrix Q = Q * G
891 if (matrixQ)
892 {
893 // FIXME if StorageOrder == RowMajor this operation is not very efficient
895 q.applyOnTheRight(k,k+1,rot);
896 }
897 }
898}
899
900} // end namespace internal
901
902} // end namespace Eigen
903
904#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
#define EIGEN_USING_STD(FUNC)
Definition: Macros.h:1195
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
Definition: StaticAssert.h:187
constexpr common_return_t< T1, T2 > atan2(const T1 y, const T2 x) noexcept
Compile-time two-argument arctangent function.
Definition: atan2.hpp:82
\jacobi_module
Definition: Jacobi.h:35
EIGEN_DEVICE_FUNC void makeGivens(const Scalar &p, const Scalar &q, Scalar *r=0)
Makes *this as a Givens rotation G such that applying to the left of the vector yields: .
Definition: Jacobi.h:162
EIGEN_DEVICE_FUNC Scalar & s()
Definition: Jacobi.h:49
EIGEN_DEVICE_FUNC Scalar & c()
Definition: Jacobi.h:47
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:271
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:283
\eigenvalues_module
Definition: SelfAdjointEigenSolver.h:77
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType.
Definition: SelfAdjointEigenSolver.h:89
Matrix< Scalar, Size, Size, ColMajor, MaxColsAtCompileTime, MaxColsAtCompileTime > EigenvectorsType
Definition: SelfAdjointEigenSolver.h:92
RealVectorType m_eivalues
Definition: SelfAdjointEigenSolver.h:382
bool m_eigenvectorsOk
Definition: SelfAdjointEigenSolver.h:387
TridiagonalizationType::CoeffVectorType m_hcoeffs
Definition: SelfAdjointEigenSolver.h:384
SelfAdjointEigenSolver & computeFromTridiagonal(const RealVectorType &diag, const SubDiagonalType &subdiag, int options=ComputeEigenvectors)
Computes the eigen decomposition from a tridiagonal symmetric matrix.
Definition: SelfAdjointEigenSolver.h:472
@ Size
Definition: SelfAdjointEigenSolver.h:82
@ Options
Definition: SelfAdjointEigenSolver.h:84
@ ColsAtCompileTime
Definition: SelfAdjointEigenSolver.h:83
@ MaxColsAtCompileTime
Definition: SelfAdjointEigenSolver.h:85
EIGEN_DEVICE_FUNC SelfAdjointEigenSolver & computeDirect(const MatrixType &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix using a closed-form algorithm.
Definition: SelfAdjointEigenSolver.h:828
EigenvectorsType m_eivec
Definition: SelfAdjointEigenSolver.h:381
EIGEN_DEVICE_FUNC ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SelfAdjointEigenSolver.h:361
EIGEN_DEVICE_FUNC MatrixType operatorSqrt() const
Computes the positive-definite square root of the matrix.
Definition: SelfAdjointEigenSolver.h:324
TridiagonalizationType::SubDiagonalType m_subdiag
Definition: SelfAdjointEigenSolver.h:383
NumTraits< Scalar >::Real RealScalar
Real scalar type for _MatrixType.
Definition: SelfAdjointEigenSolver.h:100
EIGEN_DEVICE_FUNC MatrixType operatorInverseSqrt() const
Computes the inverse square root of the matrix.
Definition: SelfAdjointEigenSolver.h:349
bool m_isInitialized
Definition: SelfAdjointEigenSolver.h:386
ComputationInfo m_info
Definition: SelfAdjointEigenSolver.h:385
Eigen::Index Index
Definition: SelfAdjointEigenSolver.h:90
static const int m_maxIterations
Maximum number of iterations.
Definition: SelfAdjointEigenSolver.h:372
EIGEN_DEVICE_FUNC const EigenvectorsType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: SelfAdjointEigenSolver.h:277
_MatrixType MatrixType
Definition: SelfAdjointEigenSolver.h:80
static EIGEN_DEVICE_FUNC void check_template_parameters()
Definition: SelfAdjointEigenSolver.h:376
EIGEN_DEVICE_FUNC SelfAdjointEigenSolver & compute(const EigenBase< InputType > &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix.
EIGEN_DEVICE_FUNC SelfAdjointEigenSolver(const EigenBase< InputType > &matrix, int options=ComputeEigenvectors)
Constructor; computes eigendecomposition of given matrix.
Definition: SelfAdjointEigenSolver.h:173
EIGEN_DEVICE_FUNC const RealVectorType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: SelfAdjointEigenSolver.h:300
EIGEN_DEVICE_FUNC SelfAdjointEigenSolver(Index size)
Constructor, pre-allocates memory for dynamic-size matrices.
Definition: SelfAdjointEigenSolver.h:147
\eigenvalues_module
Definition: Tridiagonalization.h:65
type
Definition: core.h:575
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
dimensionless::scalar_t cos(const AngleUnit angle) noexcept
Compute cosine.
Definition: math.h:61
auto sqrt(const UnitType &value) noexcept -> unit_t< square_root< typename units::traits::unit_t_traits< UnitType >::unit_type >, typename units::traits::unit_t_traits< UnitType >::underlying_type, linear_scale >
computes the square root of value
Definition: math.h:483
dimensionless::scalar_t sin(const AngleUnit angle) noexcept
Compute sine.
Definition: math.h:81
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:440
@ Success
Computation was successful.
Definition: Constants.h:442
@ NoConvergence
Iterative procedure did not converge.
Definition: Constants.h:446
@ GenEigMask
Definition: Constants.h:418
@ EigVecMask
Definition: Constants.h:407
@ ComputeEigenvectors
Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that both the eigenva...
Definition: Constants.h:405
constexpr common_return_t< T1, T2 > hypot(const T1 x, const T2 y) noexcept
Compile-time Pythagorean addition function.
Definition: hypot.hpp:84
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
static EIGEN_DEVICE_FUNC void tridiagonal_qr_step(RealScalar *diag, RealScalar *subdiag, Index start, Index end, Scalar *matrixQ, Index n)
Definition: SelfAdjointEigenSolver.h:839
EIGEN_DEVICE_FUNC void tridiagonalization_inplace(MatrixType &matA, CoeffVectorType &hCoeffs)
Definition: Tridiagonalization.h:349
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC ComputationInfo computeFromTridiagonal_impl(DiagType &diag, SubDiagType &subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType &eivec)
Definition: SelfAdjointEigenSolver.h:504
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: MathFunctions.h:1091
EIGEN_STRONG_INLINE void swap(T &a, T &b)
Definition: Meta.h:766
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typenameNumTraits< T >::Real >::type abs(const T &x)
Definition: MathFunctions.h:1509
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
static EIGEN_DEPRECATED const end_t end
Definition: IndexedViewHelper.h:181
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
static constexpr const unit_t< compound_unit< energy::joule, time::seconds > > h(6.626070040e-34)
Planck constant.
static constexpr const charge::coulomb_t e(1.6021766208e-19)
elementary charge.
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
static EIGEN_DEVICE_FUNC void computeRoots(const MatrixType &m, VectorType &roots)
Definition: SelfAdjointEigenSolver.h:749
SolverType::Scalar Scalar
Definition: SelfAdjointEigenSolver.h:745
SolverType::RealVectorType VectorType
Definition: SelfAdjointEigenSolver.h:744
SolverType::EigenvectorsType EigenvectorsType
Definition: SelfAdjointEigenSolver.h:746
SolverType::MatrixType MatrixType
Definition: SelfAdjointEigenSolver.h:743
static EIGEN_DEVICE_FUNC void run(SolverType &solver, const MatrixType &mat, int options)
Definition: SelfAdjointEigenSolver.h:759
SolverType::RealVectorType VectorType
Definition: SelfAdjointEigenSolver.h:585
SolverType::Scalar Scalar
Definition: SelfAdjointEigenSolver.h:586
SolverType::EigenvectorsType EigenvectorsType
Definition: SelfAdjointEigenSolver.h:587
SolverType::MatrixType MatrixType
Definition: SelfAdjointEigenSolver.h:584
static EIGEN_DEVICE_FUNC void run(SolverType &solver, const MatrixType &mat, int options)
Definition: SelfAdjointEigenSolver.h:655
static EIGEN_DEVICE_FUNC void computeRoots(const MatrixType &m, VectorType &roots)
Definition: SelfAdjointEigenSolver.h:595
static EIGEN_DEVICE_FUNC bool extract_kernel(MatrixType &mat, Ref< VectorType > res, Ref< VectorType > representative)
Definition: SelfAdjointEigenSolver.h:634
Definition: SelfAdjointEigenSolver.h:576
static EIGEN_DEVICE_FUNC void run(SolverType &eig, const typename SolverType::MatrixType &A, int options)
Definition: SelfAdjointEigenSolver.h:578
Definition: XprHelper.h:615
Definition: Meta.h:96