WPILibC++ 2023.4.3-108-ge5452e3
MatrixLogarithm.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
5// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_MATRIX_LOGARITHM
12#define EIGEN_MATRIX_LOGARITHM
13
14namespace Eigen {
15
16namespace internal {
17
18template <typename Scalar>
20{
21 static const int value = 3;
22};
23
24template <typename Scalar>
26{
28 static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
29 std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
30 std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
31 std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
32 11; // quadruple precision
33};
34
35/** \brief Compute logarithm of 2x2 triangular matrix. */
36template <typename MatrixType>
37void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
38{
39 typedef typename MatrixType::Scalar Scalar;
40 typedef typename MatrixType::RealScalar RealScalar;
41 using std::abs;
42 using std::ceil;
43 using std::imag;
44 using std::log;
45
46 Scalar logA00 = log(A(0,0));
47 Scalar logA11 = log(A(1,1));
48
49 result(0,0) = logA00;
50 result(1,0) = Scalar(0);
51 result(1,1) = logA11;
52
53 Scalar y = A(1,1) - A(0,0);
54 if (y==Scalar(0))
55 {
56 result(0,1) = A(0,1) / A(0,0);
57 }
58 else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
59 {
60 result(0,1) = A(0,1) * (logA11 - logA00) / y;
61 }
62 else
63 {
64 // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
65 RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
66 result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y;
67 }
68}
69
70/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
71inline int matrix_log_get_pade_degree(float normTminusI)
72{
73 const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
74 5.3149729967117310e-1 };
75 const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
76 const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
77 int degree = minPadeDegree;
78 for (; degree <= maxPadeDegree; ++degree)
79 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
80 break;
81 return degree;
82}
83
84/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
85inline int matrix_log_get_pade_degree(double normTminusI)
86{
87 const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
88 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
89 const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
90 const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
91 int degree = minPadeDegree;
92 for (; degree <= maxPadeDegree; ++degree)
93 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
94 break;
95 return degree;
96}
97
98/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
99inline int matrix_log_get_pade_degree(long double normTminusI)
100{
101#if LDBL_MANT_DIG == 53 // double precision
102 const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
103 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
104#elif LDBL_MANT_DIG <= 64 // extended precision
105 const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
106 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
107 2.32777776523703892094e-1L };
108#elif LDBL_MANT_DIG <= 106 // double-double
109 const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
110 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
111 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
112 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
113 1.05026503471351080481093652651105e-1L };
114#else // quadruple precision
115 const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
116 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
117 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
118 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
119 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
120#endif
121 const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
122 const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
123 int degree = minPadeDegree;
124 for (; degree <= maxPadeDegree; ++degree)
125 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
126 break;
127 return degree;
128}
129
130/* \brief Compute Pade approximation to matrix logarithm */
131template <typename MatrixType>
132void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
133{
134 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
135 const int minPadeDegree = 3;
136 const int maxPadeDegree = 11;
137 assert(degree >= minPadeDegree && degree <= maxPadeDegree);
138 // FIXME this creates float-conversion-warnings if these are enabled.
139 // Either manually convert each value, or disable the warning locally
140 const RealScalar nodes[][maxPadeDegree] = {
141 { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
142 0.8872983346207416885179265399782400L },
143 { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
144 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
145 { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
146 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
147 0.9530899229693319963988134391496965L },
148 { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
149 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
150 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
151 { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
152 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
153 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
154 0.9745539561713792622630948420239256L },
155 { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
156 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
157 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
158 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
159 { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
160 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
161 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
162 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
163 0.9840801197538130449177881014518364L },
164 { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
165 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
166 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
167 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
168 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
169 { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
170 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
171 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
172 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
173 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
174 0.9891143290730284964019690005614287L } };
175
176 const RealScalar weights[][maxPadeDegree] = {
177 { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
178 0.2777777777777777777777777777777778L },
179 { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
180 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
181 { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
182 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
183 0.1184634425280945437571320203599587L },
184 { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
185 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
186 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
187 { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
188 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
189 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
190 0.0647424830844348466353057163395410L },
191 { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
192 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
193 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
194 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
195 { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
196 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
197 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
198 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
199 0.0406371941807872059859460790552618L },
200 { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
201 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
202 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
203 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
204 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
205 { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
206 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
207 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
208 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
209 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
210 0.0278342835580868332413768602212743L } };
211
212 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
213 result.setZero(T.rows(), T.rows());
214 for (int k = 0; k < degree; ++k) {
215 RealScalar weight = weights[degree-minPadeDegree][k];
216 RealScalar node = nodes[degree-minPadeDegree][k];
217 result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
218 .template triangularView<Upper>().solve(TminusI);
219 }
220}
221
222/** \brief Compute logarithm of triangular matrices with size > 2.
223 * \details This uses a inverse scale-and-square algorithm. */
224template <typename MatrixType>
225void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
226{
227 typedef typename MatrixType::Scalar Scalar;
228 typedef typename NumTraits<Scalar>::Real RealScalar;
229 using std::pow;
230
231 int numberOfSquareRoots = 0;
232 int numberOfExtraSquareRoots = 0;
233 int degree;
234 MatrixType T = A, sqrtT;
235
236 const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
237 const RealScalar maxNormForPade = RealScalar(
238 maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
239 maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
240 maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
241 maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
242 1.1880960220216759245467951592883642e-1L); // quadruple precision
243
244 while (true) {
245 RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
246 if (normTminusI < maxNormForPade) {
247 degree = matrix_log_get_pade_degree(normTminusI);
248 int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
249 if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
250 break;
251 ++numberOfExtraSquareRoots;
252 }
253 matrix_sqrt_triangular(T, sqrtT);
254 T = sqrtT.template triangularView<Upper>();
255 ++numberOfSquareRoots;
256 }
257
259 result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible
260}
261
262/** \ingroup MatrixFunctions_Module
263 * \class MatrixLogarithmAtomic
264 * \brief Helper class for computing matrix logarithm of atomic matrices.
265 *
266 * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
267 *
268 * \sa class MatrixFunctionAtomic, MatrixBase::log()
269 */
270template <typename MatrixType>
272{
273public:
274 /** \brief Compute matrix logarithm of atomic matrix
275 * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
276 * \returns The logarithm of \p A.
277 */
278 MatrixType compute(const MatrixType& A);
279};
280
281template <typename MatrixType>
282MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
283{
284 using std::log;
285 MatrixType result(A.rows(), A.rows());
286 if (A.rows() == 1)
287 result(0,0) = log(A(0,0));
288 else if (A.rows() == 2)
290 else
292 return result;
293}
294
295} // end of namespace internal
296
297/** \ingroup MatrixFunctions_Module
298 *
299 * \brief Proxy for the matrix logarithm of some matrix (expression).
300 *
301 * \tparam Derived Type of the argument to the matrix function.
302 *
303 * This class holds the argument to the matrix function until it is
304 * assigned or evaluated for some other reason (so the argument
305 * should not be changed in the meantime). It is the return type of
306 * MatrixBase::log() and most of the time this is the only way it
307 * is used.
308 */
309template<typename Derived> class MatrixLogarithmReturnValue
310: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
311{
312public:
313 typedef typename Derived::Scalar Scalar;
314 typedef typename Derived::Index Index;
315
316protected:
318
319public:
320
321 /** \brief Constructor.
322 *
323 * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
324 */
325 explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
326
327 /** \brief Compute the matrix logarithm.
328 *
329 * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
330 */
331 template <typename ResultType>
332 inline void evalTo(ResultType& result) const
333 {
334 typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
335 typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
337 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
340 AtomicType atomic;
341
343 }
344
345 Index rows() const { return m_A.rows(); }
346 Index cols() const { return m_A.cols(); }
347
348private:
349 const DerivedNested m_A;
350};
351
352namespace internal {
353 template<typename Derived>
355 {
356 typedef typename Derived::PlainObject ReturnType;
357 };
358}
359
360
361/********** MatrixBase method **********/
362
363
364template <typename Derived>
366{
367 eigen_assert(rows() == cols());
368 return MatrixLogarithmReturnValue<Derived>(derived());
369}
370
371} // end namespace Eigen
372
373#endif // EIGEN_MATRIX_LOGARITHM
EIGEN_DEVICE_FUNC const ImagReturnType imag() const
Definition: CommonCwiseUnaryOps.h:109
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_PI
Definition: MathFunctions.h:16
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseAbsReturnType cwiseAbs() const
Definition: MatrixCwiseUnaryOps.h:33
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
Proxy for the matrix logarithm of some matrix (expression).
Definition: MatrixLogarithm.h:311
Index rows() const
Definition: MatrixLogarithm.h:345
internal::ref_selector< Derived >::type DerivedNested
Definition: MatrixLogarithm.h:317
Index cols() const
Definition: MatrixLogarithm.h:346
Derived::Index Index
Definition: MatrixLogarithm.h:314
void evalTo(ResultType &result) const
Compute the matrix logarithm.
Definition: MatrixLogarithm.h:332
Derived::Scalar Scalar
Definition: MatrixLogarithm.h:313
MatrixLogarithmReturnValue(const Derived &A)
Constructor.
Definition: MatrixLogarithm.h:325
Definition: ReturnByValue.h:52
Helper class for computing matrix logarithm of atomic matrices.
Definition: MatrixLogarithm.h:272
MatrixType compute(const MatrixType &A)
Compute matrix logarithm of atomic matrix.
Definition: MatrixLogarithm.h:282
Definition: core.h:1240
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Definition: MatrixSquareRoot.h:204
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
dimensionless::scalar_t log(const ScalarUnit x) noexcept
Compute natural logarithm.
Definition: math.h:349
dimensionless::scalar_t log1p(const ScalarUnit x) noexcept
Compute logarithm plus one.
Definition: math.h:437
UnitType ceil(const UnitType x) noexcept
Round up value.
Definition: math.h:528
void matrix_log_compute_2x2(const MatrixType &A, MatrixType &result)
Compute logarithm of 2x2 triangular matrix.
Definition: MatrixLogarithm.h:37
void matrix_log_compute_pade(MatrixType &result, const MatrixType &T, int degree)
Definition: MatrixLogarithm.h:132
const Scalar & y
Definition: MathFunctions.h:821
void matrix_log_compute_big(const MatrixType &A, MatrixType &result)
Compute logarithm of triangular matrices with size > 2.
Definition: MatrixLogarithm.h:225
int matrix_log_get_pade_degree(float normTminusI)
Definition: MatrixLogarithm.h:71
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
result
Definition: format.h:2564
Definition: Eigen_Colamd.h:50
degree
Definition: angle.h:43
constexpr common_t< T1, T2 > pow(const T1 base, const T2 exp_term) noexcept
Compile-time power function.
Definition: pow.hpp:76
T Real
Definition: NumTraits.h:164
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
static void run(const MatrixType &A, AtomicType &atomic, ResultType &result)
Compute the matrix function.
Definition: MatrixLogarithm.h:26
NumTraits< Scalar >::Real RealScalar
Definition: MatrixLogarithm.h:27
Definition: MatrixLogarithm.h:20
T type
Definition: Meta.h:126
Derived::PlainObject ReturnType
Definition: MatrixLogarithm.h:356
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96