001//
002// This file is auto-generated. Please don't modify it!
003//
004package org.opencv.imgproc;
005
006import java.util.ArrayList;
007import java.util.List;
008import org.opencv.core.Mat;
009import org.opencv.core.MatOfFloat;
010import org.opencv.core.MatOfInt;
011import org.opencv.core.MatOfInt4;
012import org.opencv.core.MatOfPoint;
013import org.opencv.core.MatOfPoint2f;
014import org.opencv.core.Point;
015import org.opencv.core.Rect;
016import org.opencv.core.RotatedRect;
017import org.opencv.core.Scalar;
018import org.opencv.core.Size;
019import org.opencv.core.TermCriteria;
020import org.opencv.imgproc.CLAHE;
021import org.opencv.imgproc.GeneralizedHoughBallard;
022import org.opencv.imgproc.GeneralizedHoughGuil;
023import org.opencv.imgproc.LineSegmentDetector;
024import org.opencv.utils.Converters;
025
026// C++: class Imgproc
027
028public class Imgproc {
029
030    private static final int
031            IPL_BORDER_CONSTANT = 0,
032            IPL_BORDER_REPLICATE = 1,
033            IPL_BORDER_REFLECT = 2,
034            IPL_BORDER_WRAP = 3,
035            IPL_BORDER_REFLECT_101 = 4,
036            IPL_BORDER_TRANSPARENT = 5,
037            CV_INTER_NN = 0,
038            CV_INTER_LINEAR = 1,
039            CV_INTER_CUBIC = 2,
040            CV_INTER_AREA = 3,
041            CV_INTER_LANCZOS4 = 4,
042            CV_MOP_ERODE = 0,
043            CV_MOP_DILATE = 1,
044            CV_MOP_OPEN = 2,
045            CV_MOP_CLOSE = 3,
046            CV_MOP_GRADIENT = 4,
047            CV_MOP_TOPHAT = 5,
048            CV_MOP_BLACKHAT = 6,
049            CV_RETR_EXTERNAL = 0,
050            CV_RETR_LIST = 1,
051            CV_RETR_CCOMP = 2,
052            CV_RETR_TREE = 3,
053            CV_RETR_FLOODFILL = 4,
054            CV_CHAIN_APPROX_NONE = 1,
055            CV_CHAIN_APPROX_SIMPLE = 2,
056            CV_CHAIN_APPROX_TC89_L1 = 3,
057            CV_CHAIN_APPROX_TC89_KCOS = 4,
058            CV_THRESH_BINARY = 0,
059            CV_THRESH_BINARY_INV = 1,
060            CV_THRESH_TRUNC = 2,
061            CV_THRESH_TOZERO = 3,
062            CV_THRESH_TOZERO_INV = 4,
063            CV_THRESH_MASK = 7,
064            CV_THRESH_OTSU = 8,
065            CV_THRESH_TRIANGLE = 16;
066
067
068    // C++: enum <unnamed>
069    public static final int
070            CV_GAUSSIAN_5x5 = 7,
071            CV_SCHARR = -1,
072            CV_MAX_SOBEL_KSIZE = 7,
073            CV_RGBA2mRGBA = 125,
074            CV_mRGBA2RGBA = 126,
075            CV_WARP_FILL_OUTLIERS = 8,
076            CV_WARP_INVERSE_MAP = 16,
077            CV_CHAIN_CODE = 0,
078            CV_LINK_RUNS = 5,
079            CV_POLY_APPROX_DP = 0,
080            CV_CONTOURS_MATCH_I1 = 1,
081            CV_CONTOURS_MATCH_I2 = 2,
082            CV_CONTOURS_MATCH_I3 = 3,
083            CV_CLOCKWISE = 1,
084            CV_COUNTER_CLOCKWISE = 2,
085            CV_COMP_CORREL = 0,
086            CV_COMP_CHISQR = 1,
087            CV_COMP_INTERSECT = 2,
088            CV_COMP_BHATTACHARYYA = 3,
089            CV_COMP_HELLINGER = CV_COMP_BHATTACHARYYA,
090            CV_COMP_CHISQR_ALT = 4,
091            CV_COMP_KL_DIV = 5,
092            CV_DIST_MASK_3 = 3,
093            CV_DIST_MASK_5 = 5,
094            CV_DIST_MASK_PRECISE = 0,
095            CV_DIST_LABEL_CCOMP = 0,
096            CV_DIST_LABEL_PIXEL = 1,
097            CV_DIST_USER = -1,
098            CV_DIST_L1 = 1,
099            CV_DIST_L2 = 2,
100            CV_DIST_C = 3,
101            CV_DIST_L12 = 4,
102            CV_DIST_FAIR = 5,
103            CV_DIST_WELSCH = 6,
104            CV_DIST_HUBER = 7,
105            CV_CANNY_L2_GRADIENT = (1 << 31),
106            CV_HOUGH_STANDARD = 0,
107            CV_HOUGH_PROBABILISTIC = 1,
108            CV_HOUGH_MULTI_SCALE = 2,
109            CV_HOUGH_GRADIENT = 3;
110
111
112    // C++: enum MorphShapes_c (MorphShapes_c)
113    public static final int
114            CV_SHAPE_RECT = 0,
115            CV_SHAPE_CROSS = 1,
116            CV_SHAPE_ELLIPSE = 2,
117            CV_SHAPE_CUSTOM = 100;
118
119
120    // C++: enum SmoothMethod_c (SmoothMethod_c)
121    public static final int
122            CV_BLUR_NO_SCALE = 0,
123            CV_BLUR = 1,
124            CV_GAUSSIAN = 2,
125            CV_MEDIAN = 3,
126            CV_BILATERAL = 4;
127
128
129    // C++: enum AdaptiveThresholdTypes (cv.AdaptiveThresholdTypes)
130    public static final int
131            ADAPTIVE_THRESH_MEAN_C = 0,
132            ADAPTIVE_THRESH_GAUSSIAN_C = 1;
133
134
135    // C++: enum ColorConversionCodes (cv.ColorConversionCodes)
136    public static final int
137            COLOR_BGR2BGRA = 0,
138            COLOR_RGB2RGBA = COLOR_BGR2BGRA,
139            COLOR_BGRA2BGR = 1,
140            COLOR_RGBA2RGB = COLOR_BGRA2BGR,
141            COLOR_BGR2RGBA = 2,
142            COLOR_RGB2BGRA = COLOR_BGR2RGBA,
143            COLOR_RGBA2BGR = 3,
144            COLOR_BGRA2RGB = COLOR_RGBA2BGR,
145            COLOR_BGR2RGB = 4,
146            COLOR_RGB2BGR = COLOR_BGR2RGB,
147            COLOR_BGRA2RGBA = 5,
148            COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
149            COLOR_BGR2GRAY = 6,
150            COLOR_RGB2GRAY = 7,
151            COLOR_GRAY2BGR = 8,
152            COLOR_GRAY2RGB = COLOR_GRAY2BGR,
153            COLOR_GRAY2BGRA = 9,
154            COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
155            COLOR_BGRA2GRAY = 10,
156            COLOR_RGBA2GRAY = 11,
157            COLOR_BGR2BGR565 = 12,
158            COLOR_RGB2BGR565 = 13,
159            COLOR_BGR5652BGR = 14,
160            COLOR_BGR5652RGB = 15,
161            COLOR_BGRA2BGR565 = 16,
162            COLOR_RGBA2BGR565 = 17,
163            COLOR_BGR5652BGRA = 18,
164            COLOR_BGR5652RGBA = 19,
165            COLOR_GRAY2BGR565 = 20,
166            COLOR_BGR5652GRAY = 21,
167            COLOR_BGR2BGR555 = 22,
168            COLOR_RGB2BGR555 = 23,
169            COLOR_BGR5552BGR = 24,
170            COLOR_BGR5552RGB = 25,
171            COLOR_BGRA2BGR555 = 26,
172            COLOR_RGBA2BGR555 = 27,
173            COLOR_BGR5552BGRA = 28,
174            COLOR_BGR5552RGBA = 29,
175            COLOR_GRAY2BGR555 = 30,
176            COLOR_BGR5552GRAY = 31,
177            COLOR_BGR2XYZ = 32,
178            COLOR_RGB2XYZ = 33,
179            COLOR_XYZ2BGR = 34,
180            COLOR_XYZ2RGB = 35,
181            COLOR_BGR2YCrCb = 36,
182            COLOR_RGB2YCrCb = 37,
183            COLOR_YCrCb2BGR = 38,
184            COLOR_YCrCb2RGB = 39,
185            COLOR_BGR2HSV = 40,
186            COLOR_RGB2HSV = 41,
187            COLOR_BGR2Lab = 44,
188            COLOR_RGB2Lab = 45,
189            COLOR_BGR2Luv = 50,
190            COLOR_RGB2Luv = 51,
191            COLOR_BGR2HLS = 52,
192            COLOR_RGB2HLS = 53,
193            COLOR_HSV2BGR = 54,
194            COLOR_HSV2RGB = 55,
195            COLOR_Lab2BGR = 56,
196            COLOR_Lab2RGB = 57,
197            COLOR_Luv2BGR = 58,
198            COLOR_Luv2RGB = 59,
199            COLOR_HLS2BGR = 60,
200            COLOR_HLS2RGB = 61,
201            COLOR_BGR2HSV_FULL = 66,
202            COLOR_RGB2HSV_FULL = 67,
203            COLOR_BGR2HLS_FULL = 68,
204            COLOR_RGB2HLS_FULL = 69,
205            COLOR_HSV2BGR_FULL = 70,
206            COLOR_HSV2RGB_FULL = 71,
207            COLOR_HLS2BGR_FULL = 72,
208            COLOR_HLS2RGB_FULL = 73,
209            COLOR_LBGR2Lab = 74,
210            COLOR_LRGB2Lab = 75,
211            COLOR_LBGR2Luv = 76,
212            COLOR_LRGB2Luv = 77,
213            COLOR_Lab2LBGR = 78,
214            COLOR_Lab2LRGB = 79,
215            COLOR_Luv2LBGR = 80,
216            COLOR_Luv2LRGB = 81,
217            COLOR_BGR2YUV = 82,
218            COLOR_RGB2YUV = 83,
219            COLOR_YUV2BGR = 84,
220            COLOR_YUV2RGB = 85,
221            COLOR_YUV2RGB_NV12 = 90,
222            COLOR_YUV2BGR_NV12 = 91,
223            COLOR_YUV2RGB_NV21 = 92,
224            COLOR_YUV2BGR_NV21 = 93,
225            COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
226            COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
227            COLOR_YUV2RGBA_NV12 = 94,
228            COLOR_YUV2BGRA_NV12 = 95,
229            COLOR_YUV2RGBA_NV21 = 96,
230            COLOR_YUV2BGRA_NV21 = 97,
231            COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
232            COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
233            COLOR_YUV2RGB_YV12 = 98,
234            COLOR_YUV2BGR_YV12 = 99,
235            COLOR_YUV2RGB_IYUV = 100,
236            COLOR_YUV2BGR_IYUV = 101,
237            COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
238            COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
239            COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
240            COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
241            COLOR_YUV2RGBA_YV12 = 102,
242            COLOR_YUV2BGRA_YV12 = 103,
243            COLOR_YUV2RGBA_IYUV = 104,
244            COLOR_YUV2BGRA_IYUV = 105,
245            COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
246            COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
247            COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
248            COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
249            COLOR_YUV2GRAY_420 = 106,
250            COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
251            COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
252            COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
253            COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
254            COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
255            COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
256            COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
257            COLOR_YUV2RGB_UYVY = 107,
258            COLOR_YUV2BGR_UYVY = 108,
259            COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
260            COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
261            COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
262            COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
263            COLOR_YUV2RGBA_UYVY = 111,
264            COLOR_YUV2BGRA_UYVY = 112,
265            COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
266            COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
267            COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
268            COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
269            COLOR_YUV2RGB_YUY2 = 115,
270            COLOR_YUV2BGR_YUY2 = 116,
271            COLOR_YUV2RGB_YVYU = 117,
272            COLOR_YUV2BGR_YVYU = 118,
273            COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
274            COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
275            COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
276            COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
277            COLOR_YUV2RGBA_YUY2 = 119,
278            COLOR_YUV2BGRA_YUY2 = 120,
279            COLOR_YUV2RGBA_YVYU = 121,
280            COLOR_YUV2BGRA_YVYU = 122,
281            COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
282            COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
283            COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
284            COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
285            COLOR_YUV2GRAY_UYVY = 123,
286            COLOR_YUV2GRAY_YUY2 = 124,
287            COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
288            COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
289            COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
290            COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
291            COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
292            COLOR_RGBA2mRGBA = 125,
293            COLOR_mRGBA2RGBA = 126,
294            COLOR_RGB2YUV_I420 = 127,
295            COLOR_BGR2YUV_I420 = 128,
296            COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
297            COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
298            COLOR_RGBA2YUV_I420 = 129,
299            COLOR_BGRA2YUV_I420 = 130,
300            COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
301            COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
302            COLOR_RGB2YUV_YV12 = 131,
303            COLOR_BGR2YUV_YV12 = 132,
304            COLOR_RGBA2YUV_YV12 = 133,
305            COLOR_BGRA2YUV_YV12 = 134,
306            COLOR_BayerBG2BGR = 46,
307            COLOR_BayerGB2BGR = 47,
308            COLOR_BayerRG2BGR = 48,
309            COLOR_BayerGR2BGR = 49,
310            COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
311            COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
312            COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
313            COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
314            COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
315            COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
316            COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
317            COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
318            COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
319            COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
320            COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
321            COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
322            COLOR_BayerBG2GRAY = 86,
323            COLOR_BayerGB2GRAY = 87,
324            COLOR_BayerRG2GRAY = 88,
325            COLOR_BayerGR2GRAY = 89,
326            COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
327            COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
328            COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
329            COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
330            COLOR_BayerBG2BGR_VNG = 62,
331            COLOR_BayerGB2BGR_VNG = 63,
332            COLOR_BayerRG2BGR_VNG = 64,
333            COLOR_BayerGR2BGR_VNG = 65,
334            COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
335            COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
336            COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
337            COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
338            COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
339            COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
340            COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
341            COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
342            COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
343            COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
344            COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
345            COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
346            COLOR_BayerBG2BGR_EA = 135,
347            COLOR_BayerGB2BGR_EA = 136,
348            COLOR_BayerRG2BGR_EA = 137,
349            COLOR_BayerGR2BGR_EA = 138,
350            COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA,
351            COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA,
352            COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA,
353            COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA,
354            COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA,
355            COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA,
356            COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA,
357            COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA,
358            COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
359            COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
360            COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
361            COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
362            COLOR_BayerBG2BGRA = 139,
363            COLOR_BayerGB2BGRA = 140,
364            COLOR_BayerRG2BGRA = 141,
365            COLOR_BayerGR2BGRA = 142,
366            COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
367            COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
368            COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
369            COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
370            COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
371            COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
372            COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
373            COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
374            COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA,
375            COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA,
376            COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA,
377            COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA,
378            COLOR_COLORCVT_MAX = 143;
379
380
381    // C++: enum ColormapTypes (cv.ColormapTypes)
382    public static final int
383            COLORMAP_AUTUMN = 0,
384            COLORMAP_BONE = 1,
385            COLORMAP_JET = 2,
386            COLORMAP_WINTER = 3,
387            COLORMAP_RAINBOW = 4,
388            COLORMAP_OCEAN = 5,
389            COLORMAP_SUMMER = 6,
390            COLORMAP_SPRING = 7,
391            COLORMAP_COOL = 8,
392            COLORMAP_HSV = 9,
393            COLORMAP_PINK = 10,
394            COLORMAP_HOT = 11,
395            COLORMAP_PARULA = 12,
396            COLORMAP_MAGMA = 13,
397            COLORMAP_INFERNO = 14,
398            COLORMAP_PLASMA = 15,
399            COLORMAP_VIRIDIS = 16,
400            COLORMAP_CIVIDIS = 17,
401            COLORMAP_TWILIGHT = 18,
402            COLORMAP_TWILIGHT_SHIFTED = 19,
403            COLORMAP_TURBO = 20,
404            COLORMAP_DEEPGREEN = 21;
405
406
407    // C++: enum ConnectedComponentsAlgorithmsTypes (cv.ConnectedComponentsAlgorithmsTypes)
408    public static final int
409            CCL_DEFAULT = -1,
410            CCL_WU = 0,
411            CCL_GRANA = 1,
412            CCL_BOLELLI = 2,
413            CCL_SAUF = 3,
414            CCL_BBDT = 4,
415            CCL_SPAGHETTI = 5;
416
417
418    // C++: enum ConnectedComponentsTypes (cv.ConnectedComponentsTypes)
419    public static final int
420            CC_STAT_LEFT = 0,
421            CC_STAT_TOP = 1,
422            CC_STAT_WIDTH = 2,
423            CC_STAT_HEIGHT = 3,
424            CC_STAT_AREA = 4,
425            CC_STAT_MAX = 5;
426
427
428    // C++: enum ContourApproximationModes (cv.ContourApproximationModes)
429    public static final int
430            CHAIN_APPROX_NONE = 1,
431            CHAIN_APPROX_SIMPLE = 2,
432            CHAIN_APPROX_TC89_L1 = 3,
433            CHAIN_APPROX_TC89_KCOS = 4;
434
435
436    // C++: enum DistanceTransformLabelTypes (cv.DistanceTransformLabelTypes)
437    public static final int
438            DIST_LABEL_CCOMP = 0,
439            DIST_LABEL_PIXEL = 1;
440
441
442    // C++: enum DistanceTransformMasks (cv.DistanceTransformMasks)
443    public static final int
444            DIST_MASK_3 = 3,
445            DIST_MASK_5 = 5,
446            DIST_MASK_PRECISE = 0;
447
448
449    // C++: enum DistanceTypes (cv.DistanceTypes)
450    public static final int
451            DIST_USER = -1,
452            DIST_L1 = 1,
453            DIST_L2 = 2,
454            DIST_C = 3,
455            DIST_L12 = 4,
456            DIST_FAIR = 5,
457            DIST_WELSCH = 6,
458            DIST_HUBER = 7;
459
460
461    // C++: enum FloodFillFlags (cv.FloodFillFlags)
462    public static final int
463            FLOODFILL_FIXED_RANGE = 1 << 16,
464            FLOODFILL_MASK_ONLY = 1 << 17;
465
466
467    // C++: enum GrabCutClasses (cv.GrabCutClasses)
468    public static final int
469            GC_BGD = 0,
470            GC_FGD = 1,
471            GC_PR_BGD = 2,
472            GC_PR_FGD = 3;
473
474
475    // C++: enum GrabCutModes (cv.GrabCutModes)
476    public static final int
477            GC_INIT_WITH_RECT = 0,
478            GC_INIT_WITH_MASK = 1,
479            GC_EVAL = 2,
480            GC_EVAL_FREEZE_MODEL = 3;
481
482
483    // C++: enum HersheyFonts (cv.HersheyFonts)
484    public static final int
485            FONT_HERSHEY_SIMPLEX = 0,
486            FONT_HERSHEY_PLAIN = 1,
487            FONT_HERSHEY_DUPLEX = 2,
488            FONT_HERSHEY_COMPLEX = 3,
489            FONT_HERSHEY_TRIPLEX = 4,
490            FONT_HERSHEY_COMPLEX_SMALL = 5,
491            FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
492            FONT_HERSHEY_SCRIPT_COMPLEX = 7,
493            FONT_ITALIC = 16;
494
495
496    // C++: enum HistCompMethods (cv.HistCompMethods)
497    public static final int
498            HISTCMP_CORREL = 0,
499            HISTCMP_CHISQR = 1,
500            HISTCMP_INTERSECT = 2,
501            HISTCMP_BHATTACHARYYA = 3,
502            HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA,
503            HISTCMP_CHISQR_ALT = 4,
504            HISTCMP_KL_DIV = 5;
505
506
507    // C++: enum HoughModes (cv.HoughModes)
508    public static final int
509            HOUGH_STANDARD = 0,
510            HOUGH_PROBABILISTIC = 1,
511            HOUGH_MULTI_SCALE = 2,
512            HOUGH_GRADIENT = 3,
513            HOUGH_GRADIENT_ALT = 4;
514
515
516    // C++: enum InterpolationFlags (cv.InterpolationFlags)
517    public static final int
518            INTER_NEAREST = 0,
519            INTER_LINEAR = 1,
520            INTER_CUBIC = 2,
521            INTER_AREA = 3,
522            INTER_LANCZOS4 = 4,
523            INTER_LINEAR_EXACT = 5,
524            INTER_NEAREST_EXACT = 6,
525            INTER_MAX = 7,
526            WARP_FILL_OUTLIERS = 8,
527            WARP_INVERSE_MAP = 16;
528
529
530    // C++: enum InterpolationMasks (cv.InterpolationMasks)
531    public static final int
532            INTER_BITS = 5,
533            INTER_BITS2 = INTER_BITS * 2,
534            INTER_TAB_SIZE = 1 << INTER_BITS,
535            INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE;
536
537
538    // C++: enum LineSegmentDetectorModes (cv.LineSegmentDetectorModes)
539    public static final int
540            LSD_REFINE_NONE = 0,
541            LSD_REFINE_STD = 1,
542            LSD_REFINE_ADV = 2;
543
544
545    // C++: enum LineTypes (cv.LineTypes)
546    public static final int
547            FILLED = -1,
548            LINE_4 = 4,
549            LINE_8 = 8,
550            LINE_AA = 16;
551
552
553    // C++: enum MarkerTypes (cv.MarkerTypes)
554    public static final int
555            MARKER_CROSS = 0,
556            MARKER_TILTED_CROSS = 1,
557            MARKER_STAR = 2,
558            MARKER_DIAMOND = 3,
559            MARKER_SQUARE = 4,
560            MARKER_TRIANGLE_UP = 5,
561            MARKER_TRIANGLE_DOWN = 6;
562
563
564    // C++: enum MorphShapes (cv.MorphShapes)
565    public static final int
566            MORPH_RECT = 0,
567            MORPH_CROSS = 1,
568            MORPH_ELLIPSE = 2;
569
570
571    // C++: enum MorphTypes (cv.MorphTypes)
572    public static final int
573            MORPH_ERODE = 0,
574            MORPH_DILATE = 1,
575            MORPH_OPEN = 2,
576            MORPH_CLOSE = 3,
577            MORPH_GRADIENT = 4,
578            MORPH_TOPHAT = 5,
579            MORPH_BLACKHAT = 6,
580            MORPH_HITMISS = 7;
581
582
583    // C++: enum RectanglesIntersectTypes (cv.RectanglesIntersectTypes)
584    public static final int
585            INTERSECT_NONE = 0,
586            INTERSECT_PARTIAL = 1,
587            INTERSECT_FULL = 2;
588
589
590    // C++: enum RetrievalModes (cv.RetrievalModes)
591    public static final int
592            RETR_EXTERNAL = 0,
593            RETR_LIST = 1,
594            RETR_CCOMP = 2,
595            RETR_TREE = 3,
596            RETR_FLOODFILL = 4;
597
598
599    // C++: enum ShapeMatchModes (cv.ShapeMatchModes)
600    public static final int
601            CONTOURS_MATCH_I1 = 1,
602            CONTOURS_MATCH_I2 = 2,
603            CONTOURS_MATCH_I3 = 3;
604
605
606    // C++: enum SpecialFilter (cv.SpecialFilter)
607    public static final int
608            FILTER_SCHARR = -1;
609
610
611    // C++: enum TemplateMatchModes (cv.TemplateMatchModes)
612    public static final int
613            TM_SQDIFF = 0,
614            TM_SQDIFF_NORMED = 1,
615            TM_CCORR = 2,
616            TM_CCORR_NORMED = 3,
617            TM_CCOEFF = 4,
618            TM_CCOEFF_NORMED = 5;
619
620
621    // C++: enum ThresholdTypes (cv.ThresholdTypes)
622    public static final int
623            THRESH_BINARY = 0,
624            THRESH_BINARY_INV = 1,
625            THRESH_TRUNC = 2,
626            THRESH_TOZERO = 3,
627            THRESH_TOZERO_INV = 4,
628            THRESH_MASK = 7,
629            THRESH_OTSU = 8,
630            THRESH_TRIANGLE = 16;
631
632
633    // C++: enum WarpPolarMode (cv.WarpPolarMode)
634    public static final int
635            WARP_POLAR_LINEAR = 0,
636            WARP_POLAR_LOG = 256;
637
638
639    //
640    // C++:  Ptr_LineSegmentDetector cv::createLineSegmentDetector(int refine = LSD_REFINE_STD, double scale = 0.8, double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, double log_eps = 0, double density_th = 0.7, int n_bins = 1024)
641    //
642
643    /**
644     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
645     *
646     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
647     * to edit those, as to tailor it for their own application.
648     *
649     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
650     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
651     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
652     * @param quant Bound to the quantization error on the gradient norm.
653     * @param ang_th Gradient angle tolerance in degrees.
654     * @param log_eps Detection threshold: -log10(NFA) &gt; log_eps. Used only when advance refinement is chosen.
655     * @param density_th Minimal density of aligned region points in the enclosing rectangle.
656     * @param n_bins Number of bins in pseudo-ordering of gradient modulus.
657     * @return automatically generated
658     */
659    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th, int n_bins) {
660        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_0(refine, scale, sigma_scale, quant, ang_th, log_eps, density_th, n_bins));
661    }
662
663    /**
664     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
665     *
666     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
667     * to edit those, as to tailor it for their own application.
668     *
669     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
670     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
671     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
672     * @param quant Bound to the quantization error on the gradient norm.
673     * @param ang_th Gradient angle tolerance in degrees.
674     * @param log_eps Detection threshold: -log10(NFA) &gt; log_eps. Used only when advance refinement is chosen.
675     * @param density_th Minimal density of aligned region points in the enclosing rectangle.
676     * @return automatically generated
677     */
678    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th) {
679        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_1(refine, scale, sigma_scale, quant, ang_th, log_eps, density_th));
680    }
681
682    /**
683     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
684     *
685     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
686     * to edit those, as to tailor it for their own application.
687     *
688     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
689     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
690     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
691     * @param quant Bound to the quantization error on the gradient norm.
692     * @param ang_th Gradient angle tolerance in degrees.
693     * @param log_eps Detection threshold: -log10(NFA) &gt; log_eps. Used only when advance refinement is chosen.
694     * @return automatically generated
695     */
696    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps) {
697        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_2(refine, scale, sigma_scale, quant, ang_th, log_eps));
698    }
699
700    /**
701     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
702     *
703     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
704     * to edit those, as to tailor it for their own application.
705     *
706     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
707     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
708     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
709     * @param quant Bound to the quantization error on the gradient norm.
710     * @param ang_th Gradient angle tolerance in degrees.
711     * @return automatically generated
712     */
713    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th) {
714        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_3(refine, scale, sigma_scale, quant, ang_th));
715    }
716
717    /**
718     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
719     *
720     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
721     * to edit those, as to tailor it for their own application.
722     *
723     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
724     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
725     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
726     * @param quant Bound to the quantization error on the gradient norm.
727     * @return automatically generated
728     */
729    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant) {
730        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_4(refine, scale, sigma_scale, quant));
731    }
732
733    /**
734     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
735     *
736     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
737     * to edit those, as to tailor it for their own application.
738     *
739     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
740     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
741     * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
742     * @return automatically generated
743     */
744    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale) {
745        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_5(refine, scale, sigma_scale));
746    }
747
748    /**
749     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
750     *
751     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
752     * to edit those, as to tailor it for their own application.
753     *
754     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
755     * @param scale The scale of the image that will be used to find the lines. Range (0..1].
756     * @return automatically generated
757     */
758    public static LineSegmentDetector createLineSegmentDetector(int refine, double scale) {
759        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_6(refine, scale));
760    }
761
762    /**
763     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
764     *
765     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
766     * to edit those, as to tailor it for their own application.
767     *
768     * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
769     * @return automatically generated
770     */
771    public static LineSegmentDetector createLineSegmentDetector(int refine) {
772        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_7(refine));
773    }
774
775    /**
776     * Creates a smart pointer to a LineSegmentDetector object and initializes it.
777     *
778     * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
779     * to edit those, as to tailor it for their own application.
780     *
781     * @return automatically generated
782     */
783    public static LineSegmentDetector createLineSegmentDetector() {
784        return LineSegmentDetector.__fromPtr__(createLineSegmentDetector_8());
785    }
786
787
788    //
789    // C++:  Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F)
790    //
791
792    /**
793     * Returns Gaussian filter coefficients.
794     *
795     * The function computes and returns the \(\texttt{ksize} \times 1\) matrix of Gaussian filter
796     * coefficients:
797     *
798     * \(G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\)
799     *
800     * where \(i=0..\texttt{ksize}-1\) and \(\alpha\) is the scale factor chosen so that \(\sum_i G_i=1\).
801     *
802     * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
803     * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
804     * You may also use the higher-level GaussianBlur.
805     * @param ksize Aperture size. It should be odd ( \(\texttt{ksize} \mod 2 = 1\) ) and positive.
806     * @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
807     * {@code sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8}.
808     * @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
809     * SEE:  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
810     * @return automatically generated
811     */
812    public static Mat getGaussianKernel(int ksize, double sigma, int ktype) {
813        return new Mat(getGaussianKernel_0(ksize, sigma, ktype));
814    }
815
816    /**
817     * Returns Gaussian filter coefficients.
818     *
819     * The function computes and returns the \(\texttt{ksize} \times 1\) matrix of Gaussian filter
820     * coefficients:
821     *
822     * \(G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\)
823     *
824     * where \(i=0..\texttt{ksize}-1\) and \(\alpha\) is the scale factor chosen so that \(\sum_i G_i=1\).
825     *
826     * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
827     * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
828     * You may also use the higher-level GaussianBlur.
829     * @param ksize Aperture size. It should be odd ( \(\texttt{ksize} \mod 2 = 1\) ) and positive.
830     * @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
831     * {@code sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8}.
832     * SEE:  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
833     * @return automatically generated
834     */
835    public static Mat getGaussianKernel(int ksize, double sigma) {
836        return new Mat(getGaussianKernel_1(ksize, sigma));
837    }
838
839
840    //
841    // C++:  void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F)
842    //
843
844    /**
845     * Returns filter coefficients for computing spatial image derivatives.
846     *
847     * The function computes and returns the filter coefficients for spatial image derivatives. When
848     * {@code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel
849     * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
850     *
851     * @param kx Output matrix of row filter coefficients. It has the type ktype .
852     * @param ky Output matrix of column filter coefficients. It has the type ktype .
853     * @param dx Derivative order in respect of x.
854     * @param dy Derivative order in respect of y.
855     * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
856     * @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
857     * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are
858     * going to filter floating-point images, you are likely to use the normalized kernels. But if you
859     * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
860     * all the fractional bits, you may want to set normalize=false .
861     * @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
862     */
863    public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, boolean normalize, int ktype) {
864        getDerivKernels_0(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize, ktype);
865    }
866
867    /**
868     * Returns filter coefficients for computing spatial image derivatives.
869     *
870     * The function computes and returns the filter coefficients for spatial image derivatives. When
871     * {@code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel
872     * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
873     *
874     * @param kx Output matrix of row filter coefficients. It has the type ktype .
875     * @param ky Output matrix of column filter coefficients. It has the type ktype .
876     * @param dx Derivative order in respect of x.
877     * @param dy Derivative order in respect of y.
878     * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
879     * @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
880     * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are
881     * going to filter floating-point images, you are likely to use the normalized kernels. But if you
882     * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
883     * all the fractional bits, you may want to set normalize=false .
884     */
885    public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, boolean normalize) {
886        getDerivKernels_1(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize);
887    }
888
889    /**
890     * Returns filter coefficients for computing spatial image derivatives.
891     *
892     * The function computes and returns the filter coefficients for spatial image derivatives. When
893     * {@code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel
894     * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
895     *
896     * @param kx Output matrix of row filter coefficients. It has the type ktype .
897     * @param ky Output matrix of column filter coefficients. It has the type ktype .
898     * @param dx Derivative order in respect of x.
899     * @param dy Derivative order in respect of y.
900     * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
901     * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are
902     * going to filter floating-point images, you are likely to use the normalized kernels. But if you
903     * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
904     * all the fractional bits, you may want to set normalize=false .
905     */
906    public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize) {
907        getDerivKernels_2(kx.nativeObj, ky.nativeObj, dx, dy, ksize);
908    }
909
910
911    //
912    // C++:  Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F)
913    //
914
915    /**
916     * Returns Gabor filter coefficients.
917     *
918     * For more details about gabor filter equations and parameters, see: [Gabor
919     * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
920     *
921     * @param ksize Size of the filter returned.
922     * @param sigma Standard deviation of the gaussian envelope.
923     * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
924     * @param lambd Wavelength of the sinusoidal factor.
925     * @param gamma Spatial aspect ratio.
926     * @param psi Phase offset.
927     * @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
928     * @return automatically generated
929     */
930    public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi, int ktype) {
931        return new Mat(getGaborKernel_0(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi, ktype));
932    }
933
934    /**
935     * Returns Gabor filter coefficients.
936     *
937     * For more details about gabor filter equations and parameters, see: [Gabor
938     * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
939     *
940     * @param ksize Size of the filter returned.
941     * @param sigma Standard deviation of the gaussian envelope.
942     * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
943     * @param lambd Wavelength of the sinusoidal factor.
944     * @param gamma Spatial aspect ratio.
945     * @param psi Phase offset.
946     * @return automatically generated
947     */
948    public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi) {
949        return new Mat(getGaborKernel_1(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi));
950    }
951
952    /**
953     * Returns Gabor filter coefficients.
954     *
955     * For more details about gabor filter equations and parameters, see: [Gabor
956     * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
957     *
958     * @param ksize Size of the filter returned.
959     * @param sigma Standard deviation of the gaussian envelope.
960     * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
961     * @param lambd Wavelength of the sinusoidal factor.
962     * @param gamma Spatial aspect ratio.
963     * @return automatically generated
964     */
965    public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma) {
966        return new Mat(getGaborKernel_2(ksize.width, ksize.height, sigma, theta, lambd, gamma));
967    }
968
969
970    //
971    // C++:  Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1))
972    //
973
974    /**
975     * Returns a structuring element of the specified size and shape for morphological operations.
976     *
977     * The function constructs and returns the structuring element that can be further passed to #erode,
978     * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
979     * the structuring element.
980     *
981     * @param shape Element shape that could be one of #MorphShapes
982     * @param ksize Size of the structuring element.
983     * @param anchor Anchor position within the element. The default value \((-1, -1)\) means that the
984     * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
985     * position. In other cases the anchor just regulates how much the result of the morphological
986     * operation is shifted.
987     * @return automatically generated
988     */
989    public static Mat getStructuringElement(int shape, Size ksize, Point anchor) {
990        return new Mat(getStructuringElement_0(shape, ksize.width, ksize.height, anchor.x, anchor.y));
991    }
992
993    /**
994     * Returns a structuring element of the specified size and shape for morphological operations.
995     *
996     * The function constructs and returns the structuring element that can be further passed to #erode,
997     * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
998     * the structuring element.
999     *
1000     * @param shape Element shape that could be one of #MorphShapes
1001     * @param ksize Size of the structuring element.
1002     * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
1003     * position. In other cases the anchor just regulates how much the result of the morphological
1004     * operation is shifted.
1005     * @return automatically generated
1006     */
1007    public static Mat getStructuringElement(int shape, Size ksize) {
1008        return new Mat(getStructuringElement_1(shape, ksize.width, ksize.height));
1009    }
1010
1011
1012    //
1013    // C++:  void cv::medianBlur(Mat src, Mat& dst, int ksize)
1014    //
1015
1016    /**
1017     * Blurs an image using the median filter.
1018     *
1019     * The function smoothes an image using the median filter with the \(\texttt{ksize} \times
1020     * \texttt{ksize}\) aperture. Each channel of a multi-channel image is processed independently.
1021     * In-place operation is supported.
1022     *
1023     * <b>Note:</b> The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
1024     *
1025     * @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
1026     * CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
1027     * @param dst destination array of the same size and type as src.
1028     * @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
1029     * SEE:  bilateralFilter, blur, boxFilter, GaussianBlur
1030     */
1031    public static void medianBlur(Mat src, Mat dst, int ksize) {
1032        medianBlur_0(src.nativeObj, dst.nativeObj, ksize);
1033    }
1034
1035
1036    //
1037    // C++:  void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT)
1038    //
1039
1040    /**
1041     * Blurs an image using a Gaussian filter.
1042     *
1043     * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1044     * supported.
1045     *
1046     * @param src input image; the image can have any number of channels, which are processed
1047     * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1048     * @param dst output image of the same size and type as src.
1049     * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1050     * positive and odd. Or, they can be zero's and then they are computed from sigma.
1051     * @param sigmaX Gaussian kernel standard deviation in X direction.
1052     * @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
1053     * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1054     * respectively (see #getGaussianKernel for details); to fully control the result regardless of
1055     * possible future modifications of all this semantics, it is recommended to specify all of ksize,
1056     * sigmaX, and sigmaY.
1057     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1058     *
1059     * SEE:  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1060     */
1061    public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY, int borderType) {
1062        GaussianBlur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY, borderType);
1063    }
1064
1065    /**
1066     * Blurs an image using a Gaussian filter.
1067     *
1068     * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1069     * supported.
1070     *
1071     * @param src input image; the image can have any number of channels, which are processed
1072     * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1073     * @param dst output image of the same size and type as src.
1074     * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1075     * positive and odd. Or, they can be zero's and then they are computed from sigma.
1076     * @param sigmaX Gaussian kernel standard deviation in X direction.
1077     * @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
1078     * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1079     * respectively (see #getGaussianKernel for details); to fully control the result regardless of
1080     * possible future modifications of all this semantics, it is recommended to specify all of ksize,
1081     * sigmaX, and sigmaY.
1082     *
1083     * SEE:  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1084     */
1085    public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY) {
1086        GaussianBlur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY);
1087    }
1088
1089    /**
1090     * Blurs an image using a Gaussian filter.
1091     *
1092     * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1093     * supported.
1094     *
1095     * @param src input image; the image can have any number of channels, which are processed
1096     * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1097     * @param dst output image of the same size and type as src.
1098     * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1099     * positive and odd. Or, they can be zero's and then they are computed from sigma.
1100     * @param sigmaX Gaussian kernel standard deviation in X direction.
1101     * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1102     * respectively (see #getGaussianKernel for details); to fully control the result regardless of
1103     * possible future modifications of all this semantics, it is recommended to specify all of ksize,
1104     * sigmaX, and sigmaY.
1105     *
1106     * SEE:  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1107     */
1108    public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) {
1109        GaussianBlur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX);
1110    }
1111
1112
1113    //
1114    // C++:  void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
1115    //
1116
1117    /**
1118     * Applies the bilateral filter to an image.
1119     *
1120     * The function applies bilateral filtering to the input image, as described in
1121     * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
1122     * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
1123     * very slow compared to most filters.
1124     *
1125     * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (&lt;
1126     * 10), the filter will not have much effect, whereas if they are large (&gt; 150), they will have a very
1127     * strong effect, making the image look "cartoonish".
1128     *
1129     * _Filter size_: Large filters (d &gt; 5) are very slow, so it is recommended to use d=5 for real-time
1130     * applications, and perhaps d=9 for offline applications that need heavy noise filtering.
1131     *
1132     * This filter does not work inplace.
1133     * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
1134     * @param dst Destination image of the same size and type as src .
1135     * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
1136     * it is computed from sigmaSpace.
1137     * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
1138     * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
1139     * in larger areas of semi-equal color.
1140     * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
1141     * farther pixels will influence each other as long as their colors are close enough (see sigmaColor
1142     * ). When d&gt;0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
1143     * proportional to sigmaSpace.
1144     * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
1145     */
1146    public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType) {
1147        bilateralFilter_0(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, borderType);
1148    }
1149
1150    /**
1151     * Applies the bilateral filter to an image.
1152     *
1153     * The function applies bilateral filtering to the input image, as described in
1154     * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
1155     * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
1156     * very slow compared to most filters.
1157     *
1158     * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (&lt;
1159     * 10), the filter will not have much effect, whereas if they are large (&gt; 150), they will have a very
1160     * strong effect, making the image look "cartoonish".
1161     *
1162     * _Filter size_: Large filters (d &gt; 5) are very slow, so it is recommended to use d=5 for real-time
1163     * applications, and perhaps d=9 for offline applications that need heavy noise filtering.
1164     *
1165     * This filter does not work inplace.
1166     * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
1167     * @param dst Destination image of the same size and type as src .
1168     * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
1169     * it is computed from sigmaSpace.
1170     * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
1171     * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
1172     * in larger areas of semi-equal color.
1173     * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
1174     * farther pixels will influence each other as long as their colors are close enough (see sigmaColor
1175     * ). When d&gt;0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
1176     * proportional to sigmaSpace.
1177     */
1178    public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace) {
1179        bilateralFilter_1(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace);
1180    }
1181
1182
1183    //
1184    // C++:  void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT)
1185    //
1186
1187    /**
1188     * Blurs an image using the box filter.
1189     *
1190     * The function smooths an image using the kernel:
1191     *
1192     * \(\texttt{K} =  \alpha \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1 \end{bmatrix}\)
1193     *
1194     * where
1195     *
1196     * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} &amp; \texttt{when } \texttt{normalize=true}  \\1 &amp; \texttt{otherwise}\end{cases}\)
1197     *
1198     * Unnormalized box filter is useful for computing various integral characteristics over each pixel
1199     * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1200     * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1201     *
1202     * @param src input image.
1203     * @param dst output image of the same size and type as src.
1204     * @param ddepth the output image depth (-1 to use src.depth()).
1205     * @param ksize blurring kernel size.
1206     * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1207     * center.
1208     * @param normalize flag, specifying whether the kernel is normalized by its area or not.
1209     * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1210     * SEE:  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1211     */
1212    public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize, int borderType) {
1213        boxFilter_0(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType);
1214    }
1215
1216    /**
1217     * Blurs an image using the box filter.
1218     *
1219     * The function smooths an image using the kernel:
1220     *
1221     * \(\texttt{K} =  \alpha \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1 \end{bmatrix}\)
1222     *
1223     * where
1224     *
1225     * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} &amp; \texttt{when } \texttt{normalize=true}  \\1 &amp; \texttt{otherwise}\end{cases}\)
1226     *
1227     * Unnormalized box filter is useful for computing various integral characteristics over each pixel
1228     * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1229     * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1230     *
1231     * @param src input image.
1232     * @param dst output image of the same size and type as src.
1233     * @param ddepth the output image depth (-1 to use src.depth()).
1234     * @param ksize blurring kernel size.
1235     * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1236     * center.
1237     * @param normalize flag, specifying whether the kernel is normalized by its area or not.
1238     * SEE:  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1239     */
1240    public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize) {
1241        boxFilter_1(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize);
1242    }
1243
1244    /**
1245     * Blurs an image using the box filter.
1246     *
1247     * The function smooths an image using the kernel:
1248     *
1249     * \(\texttt{K} =  \alpha \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1 \end{bmatrix}\)
1250     *
1251     * where
1252     *
1253     * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} &amp; \texttt{when } \texttt{normalize=true}  \\1 &amp; \texttt{otherwise}\end{cases}\)
1254     *
1255     * Unnormalized box filter is useful for computing various integral characteristics over each pixel
1256     * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1257     * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1258     *
1259     * @param src input image.
1260     * @param dst output image of the same size and type as src.
1261     * @param ddepth the output image depth (-1 to use src.depth()).
1262     * @param ksize blurring kernel size.
1263     * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1264     * center.
1265     * SEE:  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1266     */
1267    public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor) {
1268        boxFilter_2(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y);
1269    }
1270
1271    /**
1272     * Blurs an image using the box filter.
1273     *
1274     * The function smooths an image using the kernel:
1275     *
1276     * \(\texttt{K} =  \alpha \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1 \end{bmatrix}\)
1277     *
1278     * where
1279     *
1280     * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} &amp; \texttt{when } \texttt{normalize=true}  \\1 &amp; \texttt{otherwise}\end{cases}\)
1281     *
1282     * Unnormalized box filter is useful for computing various integral characteristics over each pixel
1283     * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1284     * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1285     *
1286     * @param src input image.
1287     * @param dst output image of the same size and type as src.
1288     * @param ddepth the output image depth (-1 to use src.depth()).
1289     * @param ksize blurring kernel size.
1290     * center.
1291     * SEE:  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1292     */
1293    public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize) {
1294        boxFilter_3(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height);
1295    }
1296
1297
1298    //
1299    // C++:  void cv::sqrBoxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT)
1300    //
1301
1302    /**
1303     * Calculates the normalized sum of squares of the pixel values overlapping the filter.
1304     *
1305     * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring
1306     * pixel values which overlap the filter placed over the pixel \( (x, y) \).
1307     *
1308     * The unnormalized square box filter can be useful in computing local image statistics such as the local
1309     * variance and standard deviation around the neighborhood of a pixel.
1310     *
1311     * @param src input image
1312     * @param dst output image of the same size and type as src
1313     * @param ddepth the output image depth (-1 to use src.depth())
1314     * @param ksize kernel size
1315     * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1316     * center.
1317     * @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
1318     * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1319     * SEE: boxFilter
1320     */
1321    public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize, int borderType) {
1322        sqrBoxFilter_0(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType);
1323    }
1324
1325    /**
1326     * Calculates the normalized sum of squares of the pixel values overlapping the filter.
1327     *
1328     * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring
1329     * pixel values which overlap the filter placed over the pixel \( (x, y) \).
1330     *
1331     * The unnormalized square box filter can be useful in computing local image statistics such as the local
1332     * variance and standard deviation around the neighborhood of a pixel.
1333     *
1334     * @param src input image
1335     * @param dst output image of the same size and type as src
1336     * @param ddepth the output image depth (-1 to use src.depth())
1337     * @param ksize kernel size
1338     * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1339     * center.
1340     * @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
1341     * SEE: boxFilter
1342     */
1343    public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize) {
1344        sqrBoxFilter_1(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize);
1345    }
1346
1347    /**
1348     * Calculates the normalized sum of squares of the pixel values overlapping the filter.
1349     *
1350     * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring
1351     * pixel values which overlap the filter placed over the pixel \( (x, y) \).
1352     *
1353     * The unnormalized square box filter can be useful in computing local image statistics such as the local
1354     * variance and standard deviation around the neighborhood of a pixel.
1355     *
1356     * @param src input image
1357     * @param dst output image of the same size and type as src
1358     * @param ddepth the output image depth (-1 to use src.depth())
1359     * @param ksize kernel size
1360     * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1361     * center.
1362     * SEE: boxFilter
1363     */
1364    public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor) {
1365        sqrBoxFilter_2(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y);
1366    }
1367
1368    /**
1369     * Calculates the normalized sum of squares of the pixel values overlapping the filter.
1370     *
1371     * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring
1372     * pixel values which overlap the filter placed over the pixel \( (x, y) \).
1373     *
1374     * The unnormalized square box filter can be useful in computing local image statistics such as the local
1375     * variance and standard deviation around the neighborhood of a pixel.
1376     *
1377     * @param src input image
1378     * @param dst output image of the same size and type as src
1379     * @param ddepth the output image depth (-1 to use src.depth())
1380     * @param ksize kernel size
1381     * center.
1382     * SEE: boxFilter
1383     */
1384    public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize) {
1385        sqrBoxFilter_3(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height);
1386    }
1387
1388
1389    //
1390    // C++:  void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT)
1391    //
1392
1393    /**
1394     * Blurs an image using the normalized box filter.
1395     *
1396     * The function smooths an image using the kernel:
1397     *
1398     * \(\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \end{bmatrix}\)
1399     *
1400     * The call {@code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize,
1401     * anchor, true, borderType)`.
1402     *
1403     * @param src input image; it can have any number of channels, which are processed independently, but
1404     * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1405     * @param dst output image of the same size and type as src.
1406     * @param ksize blurring kernel size.
1407     * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1408     * center.
1409     * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1410     * SEE:  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1411     */
1412    public static void blur(Mat src, Mat dst, Size ksize, Point anchor, int borderType) {
1413        blur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y, borderType);
1414    }
1415
1416    /**
1417     * Blurs an image using the normalized box filter.
1418     *
1419     * The function smooths an image using the kernel:
1420     *
1421     * \(\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \end{bmatrix}\)
1422     *
1423     * The call {@code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize,
1424     * anchor, true, borderType)`.
1425     *
1426     * @param src input image; it can have any number of channels, which are processed independently, but
1427     * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1428     * @param dst output image of the same size and type as src.
1429     * @param ksize blurring kernel size.
1430     * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1431     * center.
1432     * SEE:  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1433     */
1434    public static void blur(Mat src, Mat dst, Size ksize, Point anchor) {
1435        blur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y);
1436    }
1437
1438    /**
1439     * Blurs an image using the normalized box filter.
1440     *
1441     * The function smooths an image using the kernel:
1442     *
1443     * \(\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \hdotsfor{6} \\ 1 &amp; 1 &amp; 1 &amp;  \cdots &amp; 1 &amp; 1  \\ \end{bmatrix}\)
1444     *
1445     * The call {@code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize,
1446     * anchor, true, borderType)`.
1447     *
1448     * @param src input image; it can have any number of channels, which are processed independently, but
1449     * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1450     * @param dst output image of the same size and type as src.
1451     * @param ksize blurring kernel size.
1452     * center.
1453     * SEE:  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1454     */
1455    public static void blur(Mat src, Mat dst, Size ksize) {
1456        blur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height);
1457    }
1458
1459
1460    //
1461    // C++:  void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT)
1462    //
1463
1464    /**
1465     * Convolves an image with the kernel.
1466     *
1467     * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1468     * the aperture is partially outside the image, the function interpolates outlier pixel values
1469     * according to the specified border mode.
1470     *
1471     * The function does actually compute correlation, not the convolution:
1472     *
1473     * \(\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' &lt; \texttt{kernel.cols}\\{0\leq y' &lt; \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\)
1474     *
1475     * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1476     * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1477     * anchor.y - 1)`.
1478     *
1479     * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{@code 11 x 11} or
1480     * larger) and the direct algorithm for small kernels.
1481     *
1482     * @param src input image.
1483     * @param dst output image of the same size and the same number of channels as src.
1484     * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
1485     * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1486     * matrix; if you want to apply different kernels to different channels, split the image into
1487     * separate color planes using split and process them individually.
1488     * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
1489     * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1490     * is at the kernel center.
1491     * @param delta optional value added to the filtered pixels before storing them in dst.
1492     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1493     * SEE:  sepFilter2D, dft, matchTemplate
1494     */
1495    public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) {
1496        filter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta, borderType);
1497    }
1498
1499    /**
1500     * Convolves an image with the kernel.
1501     *
1502     * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1503     * the aperture is partially outside the image, the function interpolates outlier pixel values
1504     * according to the specified border mode.
1505     *
1506     * The function does actually compute correlation, not the convolution:
1507     *
1508     * \(\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' &lt; \texttt{kernel.cols}\\{0\leq y' &lt; \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\)
1509     *
1510     * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1511     * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1512     * anchor.y - 1)`.
1513     *
1514     * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{@code 11 x 11} or
1515     * larger) and the direct algorithm for small kernels.
1516     *
1517     * @param src input image.
1518     * @param dst output image of the same size and the same number of channels as src.
1519     * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
1520     * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1521     * matrix; if you want to apply different kernels to different channels, split the image into
1522     * separate color planes using split and process them individually.
1523     * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
1524     * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1525     * is at the kernel center.
1526     * @param delta optional value added to the filtered pixels before storing them in dst.
1527     * SEE:  sepFilter2D, dft, matchTemplate
1528     */
1529    public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta) {
1530        filter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta);
1531    }
1532
1533    /**
1534     * Convolves an image with the kernel.
1535     *
1536     * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1537     * the aperture is partially outside the image, the function interpolates outlier pixel values
1538     * according to the specified border mode.
1539     *
1540     * The function does actually compute correlation, not the convolution:
1541     *
1542     * \(\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' &lt; \texttt{kernel.cols}\\{0\leq y' &lt; \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\)
1543     *
1544     * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1545     * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1546     * anchor.y - 1)`.
1547     *
1548     * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{@code 11 x 11} or
1549     * larger) and the direct algorithm for small kernels.
1550     *
1551     * @param src input image.
1552     * @param dst output image of the same size and the same number of channels as src.
1553     * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
1554     * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1555     * matrix; if you want to apply different kernels to different channels, split the image into
1556     * separate color planes using split and process them individually.
1557     * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
1558     * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1559     * is at the kernel center.
1560     * SEE:  sepFilter2D, dft, matchTemplate
1561     */
1562    public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor) {
1563        filter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y);
1564    }
1565
1566    /**
1567     * Convolves an image with the kernel.
1568     *
1569     * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1570     * the aperture is partially outside the image, the function interpolates outlier pixel values
1571     * according to the specified border mode.
1572     *
1573     * The function does actually compute correlation, not the convolution:
1574     *
1575     * \(\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' &lt; \texttt{kernel.cols}\\{0\leq y' &lt; \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\)
1576     *
1577     * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1578     * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1579     * anchor.y - 1)`.
1580     *
1581     * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{@code 11 x 11} or
1582     * larger) and the direct algorithm for small kernels.
1583     *
1584     * @param src input image.
1585     * @param dst output image of the same size and the same number of channels as src.
1586     * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
1587     * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1588     * matrix; if you want to apply different kernels to different channels, split the image into
1589     * separate color planes using split and process them individually.
1590     * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1591     * is at the kernel center.
1592     * SEE:  sepFilter2D, dft, matchTemplate
1593     */
1594    public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel) {
1595        filter2D_3(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj);
1596    }
1597
1598
1599    //
1600    // C++:  void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT)
1601    //
1602
1603    /**
1604     * Applies a separable linear filter to an image.
1605     *
1606     * The function applies a separable linear filter to the image. That is, first, every row of src is
1607     * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1608     * kernel kernelY. The final result shifted by delta is stored in dst .
1609     *
1610     * @param src Source image.
1611     * @param dst Destination image of the same size and the same number of channels as src .
1612     * @param ddepth Destination image depth, see REF: filter_depths "combinations"
1613     * @param kernelX Coefficients for filtering each row.
1614     * @param kernelY Coefficients for filtering each column.
1615     * @param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor
1616     * is at the kernel center.
1617     * @param delta Value added to the filtered results before storing them.
1618     * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1619     * SEE:  filter2D, Sobel, GaussianBlur, boxFilter, blur
1620     */
1621    public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) {
1622        sepFilter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta, borderType);
1623    }
1624
1625    /**
1626     * Applies a separable linear filter to an image.
1627     *
1628     * The function applies a separable linear filter to the image. That is, first, every row of src is
1629     * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1630     * kernel kernelY. The final result shifted by delta is stored in dst .
1631     *
1632     * @param src Source image.
1633     * @param dst Destination image of the same size and the same number of channels as src .
1634     * @param ddepth Destination image depth, see REF: filter_depths "combinations"
1635     * @param kernelX Coefficients for filtering each row.
1636     * @param kernelY Coefficients for filtering each column.
1637     * @param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor
1638     * is at the kernel center.
1639     * @param delta Value added to the filtered results before storing them.
1640     * SEE:  filter2D, Sobel, GaussianBlur, boxFilter, blur
1641     */
1642    public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta) {
1643        sepFilter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta);
1644    }
1645
1646    /**
1647     * Applies a separable linear filter to an image.
1648     *
1649     * The function applies a separable linear filter to the image. That is, first, every row of src is
1650     * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1651     * kernel kernelY. The final result shifted by delta is stored in dst .
1652     *
1653     * @param src Source image.
1654     * @param dst Destination image of the same size and the same number of channels as src .
1655     * @param ddepth Destination image depth, see REF: filter_depths "combinations"
1656     * @param kernelX Coefficients for filtering each row.
1657     * @param kernelY Coefficients for filtering each column.
1658     * @param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor
1659     * is at the kernel center.
1660     * SEE:  filter2D, Sobel, GaussianBlur, boxFilter, blur
1661     */
1662    public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor) {
1663        sepFilter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y);
1664    }
1665
1666    /**
1667     * Applies a separable linear filter to an image.
1668     *
1669     * The function applies a separable linear filter to the image. That is, first, every row of src is
1670     * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1671     * kernel kernelY. The final result shifted by delta is stored in dst .
1672     *
1673     * @param src Source image.
1674     * @param dst Destination image of the same size and the same number of channels as src .
1675     * @param ddepth Destination image depth, see REF: filter_depths "combinations"
1676     * @param kernelX Coefficients for filtering each row.
1677     * @param kernelY Coefficients for filtering each column.
1678     * is at the kernel center.
1679     * SEE:  filter2D, Sobel, GaussianBlur, boxFilter, blur
1680     */
1681    public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY) {
1682        sepFilter2D_3(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj);
1683    }
1684
1685
1686    //
1687    // C++:  void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
1688    //
1689
1690    /**
1691     * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1692     *
1693     * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to
1694     * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\)
1695     * kernel is used (that is, no Gaussian smoothing is done). {@code ksize = 1} can only be used for the first
1696     * or the second x- or y- derivatives.
1697     *
1698     * There is also the special value {@code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr
1699     * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is
1700     *
1701     * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\)
1702     *
1703     * for the x-derivative, or transposed for the y-derivative.
1704     *
1705     * The function calculates an image derivative by convolving the image with the appropriate kernel:
1706     *
1707     * \(\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\)
1708     *
1709     * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1710     * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1711     * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1712     * case corresponds to a kernel of:
1713     *
1714     * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\)
1715     *
1716     * The second case corresponds to a kernel of:
1717     *
1718     * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\)
1719     *
1720     * @param src input image.
1721     * @param dst output image of the same size and the same number of channels as src .
1722     * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
1723     *     8-bit input images it will result in truncated derivatives.
1724     * @param dx order of the derivative x.
1725     * @param dy order of the derivative y.
1726     * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1727     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
1728     * applied (see #getDerivKernels for details).
1729     * @param delta optional delta value that is added to the results prior to storing them in dst.
1730     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1731     * SEE:  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1732     */
1733    public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) {
1734        Sobel_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta, borderType);
1735    }
1736
1737    /**
1738     * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1739     *
1740     * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to
1741     * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\)
1742     * kernel is used (that is, no Gaussian smoothing is done). {@code ksize = 1} can only be used for the first
1743     * or the second x- or y- derivatives.
1744     *
1745     * There is also the special value {@code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr
1746     * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is
1747     *
1748     * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\)
1749     *
1750     * for the x-derivative, or transposed for the y-derivative.
1751     *
1752     * The function calculates an image derivative by convolving the image with the appropriate kernel:
1753     *
1754     * \(\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\)
1755     *
1756     * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1757     * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1758     * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1759     * case corresponds to a kernel of:
1760     *
1761     * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\)
1762     *
1763     * The second case corresponds to a kernel of:
1764     *
1765     * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\)
1766     *
1767     * @param src input image.
1768     * @param dst output image of the same size and the same number of channels as src .
1769     * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
1770     *     8-bit input images it will result in truncated derivatives.
1771     * @param dx order of the derivative x.
1772     * @param dy order of the derivative y.
1773     * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1774     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
1775     * applied (see #getDerivKernels for details).
1776     * @param delta optional delta value that is added to the results prior to storing them in dst.
1777     * SEE:  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1778     */
1779    public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta) {
1780        Sobel_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta);
1781    }
1782
1783    /**
1784     * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1785     *
1786     * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to
1787     * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\)
1788     * kernel is used (that is, no Gaussian smoothing is done). {@code ksize = 1} can only be used for the first
1789     * or the second x- or y- derivatives.
1790     *
1791     * There is also the special value {@code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr
1792     * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is
1793     *
1794     * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\)
1795     *
1796     * for the x-derivative, or transposed for the y-derivative.
1797     *
1798     * The function calculates an image derivative by convolving the image with the appropriate kernel:
1799     *
1800     * \(\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\)
1801     *
1802     * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1803     * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1804     * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1805     * case corresponds to a kernel of:
1806     *
1807     * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\)
1808     *
1809     * The second case corresponds to a kernel of:
1810     *
1811     * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\)
1812     *
1813     * @param src input image.
1814     * @param dst output image of the same size and the same number of channels as src .
1815     * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
1816     *     8-bit input images it will result in truncated derivatives.
1817     * @param dx order of the derivative x.
1818     * @param dy order of the derivative y.
1819     * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1820     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
1821     * applied (see #getDerivKernels for details).
1822     * SEE:  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1823     */
1824    public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale) {
1825        Sobel_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale);
1826    }
1827
1828    /**
1829     * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1830     *
1831     * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to
1832     * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\)
1833     * kernel is used (that is, no Gaussian smoothing is done). {@code ksize = 1} can only be used for the first
1834     * or the second x- or y- derivatives.
1835     *
1836     * There is also the special value {@code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr
1837     * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is
1838     *
1839     * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\)
1840     *
1841     * for the x-derivative, or transposed for the y-derivative.
1842     *
1843     * The function calculates an image derivative by convolving the image with the appropriate kernel:
1844     *
1845     * \(\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\)
1846     *
1847     * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1848     * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1849     * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1850     * case corresponds to a kernel of:
1851     *
1852     * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\)
1853     *
1854     * The second case corresponds to a kernel of:
1855     *
1856     * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\)
1857     *
1858     * @param src input image.
1859     * @param dst output image of the same size and the same number of channels as src .
1860     * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
1861     *     8-bit input images it will result in truncated derivatives.
1862     * @param dx order of the derivative x.
1863     * @param dy order of the derivative y.
1864     * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1865     * applied (see #getDerivKernels for details).
1866     * SEE:  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1867     */
1868    public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize) {
1869        Sobel_3(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize);
1870    }
1871
1872    /**
1873     * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1874     *
1875     * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to
1876     * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\)
1877     * kernel is used (that is, no Gaussian smoothing is done). {@code ksize = 1} can only be used for the first
1878     * or the second x- or y- derivatives.
1879     *
1880     * There is also the special value {@code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr
1881     * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is
1882     *
1883     * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\)
1884     *
1885     * for the x-derivative, or transposed for the y-derivative.
1886     *
1887     * The function calculates an image derivative by convolving the image with the appropriate kernel:
1888     *
1889     * \(\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\)
1890     *
1891     * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1892     * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1893     * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1894     * case corresponds to a kernel of:
1895     *
1896     * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\)
1897     *
1898     * The second case corresponds to a kernel of:
1899     *
1900     * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\)
1901     *
1902     * @param src input image.
1903     * @param dst output image of the same size and the same number of channels as src .
1904     * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
1905     *     8-bit input images it will result in truncated derivatives.
1906     * @param dx order of the derivative x.
1907     * @param dy order of the derivative y.
1908     * applied (see #getDerivKernels for details).
1909     * SEE:  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1910     */
1911    public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy) {
1912        Sobel_4(src.nativeObj, dst.nativeObj, ddepth, dx, dy);
1913    }
1914
1915
1916    //
1917    // C++:  void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT)
1918    //
1919
1920    /**
1921     * Calculates the first order image derivative in both x and y using a Sobel operator
1922     *
1923     * Equivalent to calling:
1924     *
1925     * <code>
1926     * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1927     * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1928     * </code>
1929     *
1930     * @param src input image.
1931     * @param dx output image with first-order derivative in x.
1932     * @param dy output image with first-order derivative in y.
1933     * @param ksize size of Sobel kernel. It must be 3.
1934     * @param borderType pixel extrapolation method, see #BorderTypes.
1935     *                   Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1936     *
1937     * SEE: Sobel
1938     */
1939    public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize, int borderType) {
1940        spatialGradient_0(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize, borderType);
1941    }
1942
1943    /**
1944     * Calculates the first order image derivative in both x and y using a Sobel operator
1945     *
1946     * Equivalent to calling:
1947     *
1948     * <code>
1949     * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1950     * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1951     * </code>
1952     *
1953     * @param src input image.
1954     * @param dx output image with first-order derivative in x.
1955     * @param dy output image with first-order derivative in y.
1956     * @param ksize size of Sobel kernel. It must be 3.
1957     *                   Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1958     *
1959     * SEE: Sobel
1960     */
1961    public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize) {
1962        spatialGradient_1(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize);
1963    }
1964
1965    /**
1966     * Calculates the first order image derivative in both x and y using a Sobel operator
1967     *
1968     * Equivalent to calling:
1969     *
1970     * <code>
1971     * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1972     * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1973     * </code>
1974     *
1975     * @param src input image.
1976     * @param dx output image with first-order derivative in x.
1977     * @param dy output image with first-order derivative in y.
1978     *                   Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1979     *
1980     * SEE: Sobel
1981     */
1982    public static void spatialGradient(Mat src, Mat dx, Mat dy) {
1983        spatialGradient_2(src.nativeObj, dx.nativeObj, dy.nativeObj);
1984    }
1985
1986
1987    //
1988    // C++:  void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
1989    //
1990
1991    /**
1992     * Calculates the first x- or y- image derivative using Scharr operator.
1993     *
1994     * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
1995     * call
1996     *
1997     * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\)
1998     *
1999     * is equivalent to
2000     *
2001     * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\)
2002     *
2003     * @param src input image.
2004     * @param dst output image of the same size and the same number of channels as src.
2005     * @param ddepth output image depth, see REF: filter_depths "combinations"
2006     * @param dx order of the derivative x.
2007     * @param dy order of the derivative y.
2008     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
2009     * applied (see #getDerivKernels for details).
2010     * @param delta optional delta value that is added to the results prior to storing them in dst.
2011     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2012     * SEE:  cartToPolar
2013     */
2014    public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta, int borderType) {
2015        Scharr_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta, borderType);
2016    }
2017
2018    /**
2019     * Calculates the first x- or y- image derivative using Scharr operator.
2020     *
2021     * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
2022     * call
2023     *
2024     * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\)
2025     *
2026     * is equivalent to
2027     *
2028     * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\)
2029     *
2030     * @param src input image.
2031     * @param dst output image of the same size and the same number of channels as src.
2032     * @param ddepth output image depth, see REF: filter_depths "combinations"
2033     * @param dx order of the derivative x.
2034     * @param dy order of the derivative y.
2035     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
2036     * applied (see #getDerivKernels for details).
2037     * @param delta optional delta value that is added to the results prior to storing them in dst.
2038     * SEE:  cartToPolar
2039     */
2040    public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta) {
2041        Scharr_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta);
2042    }
2043
2044    /**
2045     * Calculates the first x- or y- image derivative using Scharr operator.
2046     *
2047     * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
2048     * call
2049     *
2050     * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\)
2051     *
2052     * is equivalent to
2053     *
2054     * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\)
2055     *
2056     * @param src input image.
2057     * @param dst output image of the same size and the same number of channels as src.
2058     * @param ddepth output image depth, see REF: filter_depths "combinations"
2059     * @param dx order of the derivative x.
2060     * @param dy order of the derivative y.
2061     * @param scale optional scale factor for the computed derivative values; by default, no scaling is
2062     * applied (see #getDerivKernels for details).
2063     * SEE:  cartToPolar
2064     */
2065    public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale) {
2066        Scharr_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale);
2067    }
2068
2069    /**
2070     * Calculates the first x- or y- image derivative using Scharr operator.
2071     *
2072     * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
2073     * call
2074     *
2075     * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\)
2076     *
2077     * is equivalent to
2078     *
2079     * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\)
2080     *
2081     * @param src input image.
2082     * @param dst output image of the same size and the same number of channels as src.
2083     * @param ddepth output image depth, see REF: filter_depths "combinations"
2084     * @param dx order of the derivative x.
2085     * @param dy order of the derivative y.
2086     * applied (see #getDerivKernels for details).
2087     * SEE:  cartToPolar
2088     */
2089    public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy) {
2090        Scharr_3(src.nativeObj, dst.nativeObj, ddepth, dx, dy);
2091    }
2092
2093
2094    //
2095    // C++:  void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
2096    //
2097
2098    /**
2099     * Calculates the Laplacian of an image.
2100     *
2101     * The function calculates the Laplacian of the source image by adding up the second x and y
2102     * derivatives calculated using the Sobel operator:
2103     *
2104     * \(\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\)
2105     *
2106     * This is done when {@code ksize &gt; 1}. When {@code ksize == 1}, the Laplacian is computed by filtering the image
2107     * with the following \(3 \times 3\) aperture:
2108     *
2109     * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\)
2110     *
2111     * @param src Source image.
2112     * @param dst Destination image of the same size and the same number of channels as src .
2113     * @param ddepth Desired depth of the destination image.
2114     * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
2115     * details. The size must be positive and odd.
2116     * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
2117     * applied. See #getDerivKernels for details.
2118     * @param delta Optional delta value that is added to the results prior to storing them in dst .
2119     * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2120     * SEE:  Sobel, Scharr
2121     */
2122    public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta, int borderType) {
2123        Laplacian_0(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta, borderType);
2124    }
2125
2126    /**
2127     * Calculates the Laplacian of an image.
2128     *
2129     * The function calculates the Laplacian of the source image by adding up the second x and y
2130     * derivatives calculated using the Sobel operator:
2131     *
2132     * \(\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\)
2133     *
2134     * This is done when {@code ksize &gt; 1}. When {@code ksize == 1}, the Laplacian is computed by filtering the image
2135     * with the following \(3 \times 3\) aperture:
2136     *
2137     * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\)
2138     *
2139     * @param src Source image.
2140     * @param dst Destination image of the same size and the same number of channels as src .
2141     * @param ddepth Desired depth of the destination image.
2142     * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
2143     * details. The size must be positive and odd.
2144     * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
2145     * applied. See #getDerivKernels for details.
2146     * @param delta Optional delta value that is added to the results prior to storing them in dst .
2147     * SEE:  Sobel, Scharr
2148     */
2149    public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta) {
2150        Laplacian_1(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta);
2151    }
2152
2153    /**
2154     * Calculates the Laplacian of an image.
2155     *
2156     * The function calculates the Laplacian of the source image by adding up the second x and y
2157     * derivatives calculated using the Sobel operator:
2158     *
2159     * \(\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\)
2160     *
2161     * This is done when {@code ksize &gt; 1}. When {@code ksize == 1}, the Laplacian is computed by filtering the image
2162     * with the following \(3 \times 3\) aperture:
2163     *
2164     * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\)
2165     *
2166     * @param src Source image.
2167     * @param dst Destination image of the same size and the same number of channels as src .
2168     * @param ddepth Desired depth of the destination image.
2169     * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
2170     * details. The size must be positive and odd.
2171     * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
2172     * applied. See #getDerivKernels for details.
2173     * SEE:  Sobel, Scharr
2174     */
2175    public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale) {
2176        Laplacian_2(src.nativeObj, dst.nativeObj, ddepth, ksize, scale);
2177    }
2178
2179    /**
2180     * Calculates the Laplacian of an image.
2181     *
2182     * The function calculates the Laplacian of the source image by adding up the second x and y
2183     * derivatives calculated using the Sobel operator:
2184     *
2185     * \(\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\)
2186     *
2187     * This is done when {@code ksize &gt; 1}. When {@code ksize == 1}, the Laplacian is computed by filtering the image
2188     * with the following \(3 \times 3\) aperture:
2189     *
2190     * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\)
2191     *
2192     * @param src Source image.
2193     * @param dst Destination image of the same size and the same number of channels as src .
2194     * @param ddepth Desired depth of the destination image.
2195     * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
2196     * details. The size must be positive and odd.
2197     * applied. See #getDerivKernels for details.
2198     * SEE:  Sobel, Scharr
2199     */
2200    public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize) {
2201        Laplacian_3(src.nativeObj, dst.nativeObj, ddepth, ksize);
2202    }
2203
2204    /**
2205     * Calculates the Laplacian of an image.
2206     *
2207     * The function calculates the Laplacian of the source image by adding up the second x and y
2208     * derivatives calculated using the Sobel operator:
2209     *
2210     * \(\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\)
2211     *
2212     * This is done when {@code ksize &gt; 1}. When {@code ksize == 1}, the Laplacian is computed by filtering the image
2213     * with the following \(3 \times 3\) aperture:
2214     *
2215     * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\)
2216     *
2217     * @param src Source image.
2218     * @param dst Destination image of the same size and the same number of channels as src .
2219     * @param ddepth Desired depth of the destination image.
2220     * details. The size must be positive and odd.
2221     * applied. See #getDerivKernels for details.
2222     * SEE:  Sobel, Scharr
2223     */
2224    public static void Laplacian(Mat src, Mat dst, int ddepth) {
2225        Laplacian_4(src.nativeObj, dst.nativeObj, ddepth);
2226    }
2227
2228
2229    //
2230    // C++:  void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false)
2231    //
2232
2233    /**
2234     * Finds edges in an image using the Canny algorithm CITE: Canny86 .
2235     *
2236     * The function finds edges in the input image and marks them in the output map edges using the
2237     * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
2238     * largest value is used to find initial segments of strong edges. See
2239     * &lt;http://en.wikipedia.org/wiki/Canny_edge_detector&gt;
2240     *
2241     * @param image 8-bit input image.
2242     * @param edges output edge map; single channels 8-bit image, which has the same size as image .
2243     * @param threshold1 first threshold for the hysteresis procedure.
2244     * @param threshold2 second threshold for the hysteresis procedure.
2245     * @param apertureSize aperture size for the Sobel operator.
2246     * @param L2gradient a flag, indicating whether a more accurate \(L_2\) norm
2247     * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude (
2248     * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough (
2249     * L2gradient=false ).
2250     */
2251    public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, boolean L2gradient) {
2252        Canny_0(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize, L2gradient);
2253    }
2254
2255    /**
2256     * Finds edges in an image using the Canny algorithm CITE: Canny86 .
2257     *
2258     * The function finds edges in the input image and marks them in the output map edges using the
2259     * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
2260     * largest value is used to find initial segments of strong edges. See
2261     * &lt;http://en.wikipedia.org/wiki/Canny_edge_detector&gt;
2262     *
2263     * @param image 8-bit input image.
2264     * @param edges output edge map; single channels 8-bit image, which has the same size as image .
2265     * @param threshold1 first threshold for the hysteresis procedure.
2266     * @param threshold2 second threshold for the hysteresis procedure.
2267     * @param apertureSize aperture size for the Sobel operator.
2268     * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude (
2269     * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough (
2270     * L2gradient=false ).
2271     */
2272    public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize) {
2273        Canny_1(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize);
2274    }
2275
2276    /**
2277     * Finds edges in an image using the Canny algorithm CITE: Canny86 .
2278     *
2279     * The function finds edges in the input image and marks them in the output map edges using the
2280     * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
2281     * largest value is used to find initial segments of strong edges. See
2282     * &lt;http://en.wikipedia.org/wiki/Canny_edge_detector&gt;
2283     *
2284     * @param image 8-bit input image.
2285     * @param edges output edge map; single channels 8-bit image, which has the same size as image .
2286     * @param threshold1 first threshold for the hysteresis procedure.
2287     * @param threshold2 second threshold for the hysteresis procedure.
2288     * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude (
2289     * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough (
2290     * L2gradient=false ).
2291     */
2292    public static void Canny(Mat image, Mat edges, double threshold1, double threshold2) {
2293        Canny_2(image.nativeObj, edges.nativeObj, threshold1, threshold2);
2294    }
2295
2296
2297    //
2298    // C++:  void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false)
2299    //
2300
2301    /**
2302     * \overload
2303     *
2304     * Finds edges in an image using the Canny algorithm with custom image gradient.
2305     *
2306     * @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
2307     * @param dy 16-bit y derivative of input image (same type as dx).
2308     * @param edges output edge map; single channels 8-bit image, which has the same size as image .
2309     * @param threshold1 first threshold for the hysteresis procedure.
2310     * @param threshold2 second threshold for the hysteresis procedure.
2311     * @param L2gradient a flag, indicating whether a more accurate \(L_2\) norm
2312     * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude (
2313     * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough (
2314     * L2gradient=false ).
2315     */
2316    public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2, boolean L2gradient) {
2317        Canny_3(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2, L2gradient);
2318    }
2319
2320    /**
2321     * \overload
2322     *
2323     * Finds edges in an image using the Canny algorithm with custom image gradient.
2324     *
2325     * @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
2326     * @param dy 16-bit y derivative of input image (same type as dx).
2327     * @param edges output edge map; single channels 8-bit image, which has the same size as image .
2328     * @param threshold1 first threshold for the hysteresis procedure.
2329     * @param threshold2 second threshold for the hysteresis procedure.
2330     * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude (
2331     * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough (
2332     * L2gradient=false ).
2333     */
2334    public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2) {
2335        Canny_4(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2);
2336    }
2337
2338
2339    //
2340    // C++:  void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT)
2341    //
2342
2343    /**
2344     * Calculates the minimal eigenvalue of gradient matrices for corner detection.
2345     *
2346     * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
2347     * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms
2348     * of the formulae in the cornerEigenValsAndVecs description.
2349     *
2350     * @param src Input single-channel 8-bit or floating-point image.
2351     * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
2352     * src .
2353     * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
2354     * @param ksize Aperture parameter for the Sobel operator.
2355     * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2356     */
2357    public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize, int borderType) {
2358        cornerMinEigenVal_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType);
2359    }
2360
2361    /**
2362     * Calculates the minimal eigenvalue of gradient matrices for corner detection.
2363     *
2364     * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
2365     * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms
2366     * of the formulae in the cornerEigenValsAndVecs description.
2367     *
2368     * @param src Input single-channel 8-bit or floating-point image.
2369     * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
2370     * src .
2371     * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
2372     * @param ksize Aperture parameter for the Sobel operator.
2373     */
2374    public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize) {
2375        cornerMinEigenVal_1(src.nativeObj, dst.nativeObj, blockSize, ksize);
2376    }
2377
2378    /**
2379     * Calculates the minimal eigenvalue of gradient matrices for corner detection.
2380     *
2381     * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
2382     * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms
2383     * of the formulae in the cornerEigenValsAndVecs description.
2384     *
2385     * @param src Input single-channel 8-bit or floating-point image.
2386     * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
2387     * src .
2388     * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
2389     */
2390    public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize) {
2391        cornerMinEigenVal_2(src.nativeObj, dst.nativeObj, blockSize);
2392    }
2393
2394
2395    //
2396    // C++:  void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT)
2397    //
2398
2399    /**
2400     * Harris corner detector.
2401     *
2402     * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
2403     * cornerEigenValsAndVecs , for each pixel \((x, y)\) it calculates a \(2\times2\) gradient covariance
2404     * matrix \(M^{(x,y)}\) over a \(\texttt{blockSize} \times \texttt{blockSize}\) neighborhood. Then, it
2405     * computes the following characteristic:
2406     *
2407     * \(\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\)
2408     *
2409     * Corners in the image can be found as the local maxima of this response map.
2410     *
2411     * @param src Input single-channel 8-bit or floating-point image.
2412     * @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
2413     * size as src .
2414     * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
2415     * @param ksize Aperture parameter for the Sobel operator.
2416     * @param k Harris detector free parameter. See the formula above.
2417     * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2418     */
2419    public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k, int borderType) {
2420        cornerHarris_0(src.nativeObj, dst.nativeObj, blockSize, ksize, k, borderType);
2421    }
2422
2423    /**
2424     * Harris corner detector.
2425     *
2426     * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
2427     * cornerEigenValsAndVecs , for each pixel \((x, y)\) it calculates a \(2\times2\) gradient covariance
2428     * matrix \(M^{(x,y)}\) over a \(\texttt{blockSize} \times \texttt{blockSize}\) neighborhood. Then, it
2429     * computes the following characteristic:
2430     *
2431     * \(\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\)
2432     *
2433     * Corners in the image can be found as the local maxima of this response map.
2434     *
2435     * @param src Input single-channel 8-bit or floating-point image.
2436     * @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
2437     * size as src .
2438     * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
2439     * @param ksize Aperture parameter for the Sobel operator.
2440     * @param k Harris detector free parameter. See the formula above.
2441     */
2442    public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k) {
2443        cornerHarris_1(src.nativeObj, dst.nativeObj, blockSize, ksize, k);
2444    }
2445
2446
2447    //
2448    // C++:  void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT)
2449    //
2450
2451    /**
2452     * Calculates eigenvalues and eigenvectors of image blocks for corner detection.
2453     *
2454     * For every pixel \(p\) , the function cornerEigenValsAndVecs considers a blockSize \(\times\) blockSize
2455     * neighborhood \(S(p)\) . It calculates the covariation matrix of derivatives over the neighborhood as:
2456     *
2457     * \(M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &amp;  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &amp;  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\)
2458     *
2459     * where the derivatives are computed using the Sobel operator.
2460     *
2461     * After that, it finds eigenvectors and eigenvalues of \(M\) and stores them in the destination image as
2462     * \((\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\) where
2463     *
2464     * <ul>
2465     *   <li>
2466     *    \(\lambda_1, \lambda_2\) are the non-sorted eigenvalues of \(M\)
2467     *   </li>
2468     *   <li>
2469     *    \(x_1, y_1\) are the eigenvectors corresponding to \(\lambda_1\)
2470     *   </li>
2471     *   <li>
2472     *    \(x_2, y_2\) are the eigenvectors corresponding to \(\lambda_2\)
2473     *   </li>
2474     * </ul>
2475     *
2476     * The output of the function can be used for robust edge or corner detection.
2477     *
2478     * @param src Input single-channel 8-bit or floating-point image.
2479     * @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
2480     * @param blockSize Neighborhood size (see details below).
2481     * @param ksize Aperture parameter for the Sobel operator.
2482     * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2483     *
2484     * SEE:  cornerMinEigenVal, cornerHarris, preCornerDetect
2485     */
2486    public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize, int borderType) {
2487        cornerEigenValsAndVecs_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType);
2488    }
2489
2490    /**
2491     * Calculates eigenvalues and eigenvectors of image blocks for corner detection.
2492     *
2493     * For every pixel \(p\) , the function cornerEigenValsAndVecs considers a blockSize \(\times\) blockSize
2494     * neighborhood \(S(p)\) . It calculates the covariation matrix of derivatives over the neighborhood as:
2495     *
2496     * \(M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &amp;  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &amp;  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\)
2497     *
2498     * where the derivatives are computed using the Sobel operator.
2499     *
2500     * After that, it finds eigenvectors and eigenvalues of \(M\) and stores them in the destination image as
2501     * \((\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\) where
2502     *
2503     * <ul>
2504     *   <li>
2505     *    \(\lambda_1, \lambda_2\) are the non-sorted eigenvalues of \(M\)
2506     *   </li>
2507     *   <li>
2508     *    \(x_1, y_1\) are the eigenvectors corresponding to \(\lambda_1\)
2509     *   </li>
2510     *   <li>
2511     *    \(x_2, y_2\) are the eigenvectors corresponding to \(\lambda_2\)
2512     *   </li>
2513     * </ul>
2514     *
2515     * The output of the function can be used for robust edge or corner detection.
2516     *
2517     * @param src Input single-channel 8-bit or floating-point image.
2518     * @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
2519     * @param blockSize Neighborhood size (see details below).
2520     * @param ksize Aperture parameter for the Sobel operator.
2521     *
2522     * SEE:  cornerMinEigenVal, cornerHarris, preCornerDetect
2523     */
2524    public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize) {
2525        cornerEigenValsAndVecs_1(src.nativeObj, dst.nativeObj, blockSize, ksize);
2526    }
2527
2528
2529    //
2530    // C++:  void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT)
2531    //
2532
2533    /**
2534     * Calculates a feature map for corner detection.
2535     *
2536     * The function calculates the complex spatial derivative-based function of the source image
2537     *
2538     * \(\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\)
2539     *
2540     * where \(D_x\),\(D_y\) are the first image derivatives, \(D_{xx}\),\(D_{yy}\) are the second image
2541     * derivatives, and \(D_{xy}\) is the mixed derivative.
2542     *
2543     * The corners can be found as local maximums of the functions, as shown below:
2544     * <code>
2545     *     Mat corners, dilated_corners;
2546     *     preCornerDetect(image, corners, 3);
2547     *     // dilation with 3x3 rectangular structuring element
2548     *     dilate(corners, dilated_corners, Mat(), 1);
2549     *     Mat corner_mask = corners == dilated_corners;
2550     * </code>
2551     *
2552     * @param src Source single-channel 8-bit of floating-point image.
2553     * @param dst Output image that has the type CV_32F and the same size as src .
2554     * @param ksize %Aperture size of the Sobel .
2555     * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2556     */
2557    public static void preCornerDetect(Mat src, Mat dst, int ksize, int borderType) {
2558        preCornerDetect_0(src.nativeObj, dst.nativeObj, ksize, borderType);
2559    }
2560
2561    /**
2562     * Calculates a feature map for corner detection.
2563     *
2564     * The function calculates the complex spatial derivative-based function of the source image
2565     *
2566     * \(\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\)
2567     *
2568     * where \(D_x\),\(D_y\) are the first image derivatives, \(D_{xx}\),\(D_{yy}\) are the second image
2569     * derivatives, and \(D_{xy}\) is the mixed derivative.
2570     *
2571     * The corners can be found as local maximums of the functions, as shown below:
2572     * <code>
2573     *     Mat corners, dilated_corners;
2574     *     preCornerDetect(image, corners, 3);
2575     *     // dilation with 3x3 rectangular structuring element
2576     *     dilate(corners, dilated_corners, Mat(), 1);
2577     *     Mat corner_mask = corners == dilated_corners;
2578     * </code>
2579     *
2580     * @param src Source single-channel 8-bit of floating-point image.
2581     * @param dst Output image that has the type CV_32F and the same size as src .
2582     * @param ksize %Aperture size of the Sobel .
2583     */
2584    public static void preCornerDetect(Mat src, Mat dst, int ksize) {
2585        preCornerDetect_1(src.nativeObj, dst.nativeObj, ksize);
2586    }
2587
2588
2589    //
2590    // C++:  void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria)
2591    //
2592
2593    /**
2594     * Refines the corner locations.
2595     *
2596     * The function iterates to find the sub-pixel accurate location of corners or radial saddle
2597     * points as described in CITE: forstner1987fast, and as shown on the figure below.
2598     *
2599     * ![image](pics/cornersubpix.png)
2600     *
2601     * Sub-pixel accurate corner locator is based on the observation that every vector from the center \(q\)
2602     * to a point \(p\) located within a neighborhood of \(q\) is orthogonal to the image gradient at \(p\)
2603     * subject to image and measurement noise. Consider the expression:
2604     *
2605     * \(\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\)
2606     *
2607     * where \({DI_{p_i}}\) is an image gradient at one of the points \(p_i\) in a neighborhood of \(q\) . The
2608     * value of \(q\) is to be found so that \(\epsilon_i\) is minimized. A system of equations may be set up
2609     * with \(\epsilon_i\) set to zero:
2610     *
2611     * \(\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\)
2612     *
2613     * where the gradients are summed within a neighborhood ("search window") of \(q\) . Calling the first
2614     * gradient term \(G\) and the second gradient term \(b\) gives:
2615     *
2616     * \(q = G^{-1}  \cdot b\)
2617     *
2618     * The algorithm sets the center of the neighborhood window at this new center \(q\) and then iterates
2619     * until the center stays within a set threshold.
2620     *
2621     * @param image Input single-channel, 8-bit or float image.
2622     * @param corners Initial coordinates of the input corners and refined coordinates provided for
2623     * output.
2624     * @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
2625     * then a \((5*2+1) \times (5*2+1) = 11 \times 11\) search window is used.
2626     * @param zeroZone Half of the size of the dead region in the middle of the search zone over which
2627     * the summation in the formula below is not done. It is used sometimes to avoid possible
2628     * singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
2629     * a size.
2630     * @param criteria Criteria for termination of the iterative process of corner refinement. That is,
2631     * the process of corner position refinement stops either after criteria.maxCount iterations or when
2632     * the corner position moves by less than criteria.epsilon on some iteration.
2633     */
2634    public static void cornerSubPix(Mat image, Mat corners, Size winSize, Size zeroZone, TermCriteria criteria) {
2635        cornerSubPix_0(image.nativeObj, corners.nativeObj, winSize.width, winSize.height, zeroZone.width, zeroZone.height, criteria.type, criteria.maxCount, criteria.epsilon);
2636    }
2637
2638
2639    //
2640    // C++:  void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04)
2641    //
2642
2643    /**
2644     * Determines strong corners on an image.
2645     *
2646     * The function finds the most prominent corners in the image or in the specified image region, as
2647     * described in CITE: Shi94
2648     *
2649     * <ul>
2650     *   <li>
2651     *    Function calculates the corner quality measure at every source image pixel using the
2652     *     #cornerMinEigenVal or #cornerHarris .
2653     *   </li>
2654     *   <li>
2655     *    Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2656     *     retained).
2657     *   </li>
2658     *   <li>
2659     *    The corners with the minimal eigenvalue less than
2660     *     \(\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\) are rejected.
2661     *   </li>
2662     *   <li>
2663     *    The remaining corners are sorted by the quality measure in the descending order.
2664     *   </li>
2665     *   <li>
2666     *    Function throws away each corner for which there is a stronger corner at a distance less than
2667     *     maxDistance.
2668     *   </li>
2669     * </ul>
2670     *
2671     * The function can be used to initialize a point-based tracker of an object.
2672     *
2673     * <b>Note:</b> If the function is called with different values A and B of the parameter qualityLevel , and
2674     * A &gt; B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2675     * with qualityLevel=B .
2676     *
2677     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2678     * @param corners Output vector of detected corners.
2679     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2680     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2681     * and all detected corners are returned.
2682     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2683     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2684     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2685     * quality measure less than the product are rejected. For example, if the best corner has the
2686     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2687     * less than 15 are rejected.
2688     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2689     * @param mask Optional region of interest. If the image is not empty (it needs to have the type
2690     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2691     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
2692     * pixel neighborhood. See cornerEigenValsAndVecs .
2693     * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2694     * or #cornerMinEigenVal.
2695     * @param k Free parameter of the Harris detector.
2696     *
2697     * SEE:  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2698     */
2699    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, boolean useHarrisDetector, double k) {
2700        Mat corners_mat = corners;
2701        goodFeaturesToTrack_0(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector, k);
2702    }
2703
2704    /**
2705     * Determines strong corners on an image.
2706     *
2707     * The function finds the most prominent corners in the image or in the specified image region, as
2708     * described in CITE: Shi94
2709     *
2710     * <ul>
2711     *   <li>
2712     *    Function calculates the corner quality measure at every source image pixel using the
2713     *     #cornerMinEigenVal or #cornerHarris .
2714     *   </li>
2715     *   <li>
2716     *    Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2717     *     retained).
2718     *   </li>
2719     *   <li>
2720     *    The corners with the minimal eigenvalue less than
2721     *     \(\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\) are rejected.
2722     *   </li>
2723     *   <li>
2724     *    The remaining corners are sorted by the quality measure in the descending order.
2725     *   </li>
2726     *   <li>
2727     *    Function throws away each corner for which there is a stronger corner at a distance less than
2728     *     maxDistance.
2729     *   </li>
2730     * </ul>
2731     *
2732     * The function can be used to initialize a point-based tracker of an object.
2733     *
2734     * <b>Note:</b> If the function is called with different values A and B of the parameter qualityLevel , and
2735     * A &gt; B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2736     * with qualityLevel=B .
2737     *
2738     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2739     * @param corners Output vector of detected corners.
2740     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2741     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2742     * and all detected corners are returned.
2743     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2744     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2745     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2746     * quality measure less than the product are rejected. For example, if the best corner has the
2747     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2748     * less than 15 are rejected.
2749     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2750     * @param mask Optional region of interest. If the image is not empty (it needs to have the type
2751     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2752     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
2753     * pixel neighborhood. See cornerEigenValsAndVecs .
2754     * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2755     * or #cornerMinEigenVal.
2756     *
2757     * SEE:  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2758     */
2759    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, boolean useHarrisDetector) {
2760        Mat corners_mat = corners;
2761        goodFeaturesToTrack_1(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector);
2762    }
2763
2764    /**
2765     * Determines strong corners on an image.
2766     *
2767     * The function finds the most prominent corners in the image or in the specified image region, as
2768     * described in CITE: Shi94
2769     *
2770     * <ul>
2771     *   <li>
2772     *    Function calculates the corner quality measure at every source image pixel using the
2773     *     #cornerMinEigenVal or #cornerHarris .
2774     *   </li>
2775     *   <li>
2776     *    Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2777     *     retained).
2778     *   </li>
2779     *   <li>
2780     *    The corners with the minimal eigenvalue less than
2781     *     \(\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\) are rejected.
2782     *   </li>
2783     *   <li>
2784     *    The remaining corners are sorted by the quality measure in the descending order.
2785     *   </li>
2786     *   <li>
2787     *    Function throws away each corner for which there is a stronger corner at a distance less than
2788     *     maxDistance.
2789     *   </li>
2790     * </ul>
2791     *
2792     * The function can be used to initialize a point-based tracker of an object.
2793     *
2794     * <b>Note:</b> If the function is called with different values A and B of the parameter qualityLevel , and
2795     * A &gt; B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2796     * with qualityLevel=B .
2797     *
2798     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2799     * @param corners Output vector of detected corners.
2800     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2801     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2802     * and all detected corners are returned.
2803     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2804     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2805     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2806     * quality measure less than the product are rejected. For example, if the best corner has the
2807     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2808     * less than 15 are rejected.
2809     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2810     * @param mask Optional region of interest. If the image is not empty (it needs to have the type
2811     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2812     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
2813     * pixel neighborhood. See cornerEigenValsAndVecs .
2814     * or #cornerMinEigenVal.
2815     *
2816     * SEE:  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2817     */
2818    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize) {
2819        Mat corners_mat = corners;
2820        goodFeaturesToTrack_2(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize);
2821    }
2822
2823    /**
2824     * Determines strong corners on an image.
2825     *
2826     * The function finds the most prominent corners in the image or in the specified image region, as
2827     * described in CITE: Shi94
2828     *
2829     * <ul>
2830     *   <li>
2831     *    Function calculates the corner quality measure at every source image pixel using the
2832     *     #cornerMinEigenVal or #cornerHarris .
2833     *   </li>
2834     *   <li>
2835     *    Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2836     *     retained).
2837     *   </li>
2838     *   <li>
2839     *    The corners with the minimal eigenvalue less than
2840     *     \(\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\) are rejected.
2841     *   </li>
2842     *   <li>
2843     *    The remaining corners are sorted by the quality measure in the descending order.
2844     *   </li>
2845     *   <li>
2846     *    Function throws away each corner for which there is a stronger corner at a distance less than
2847     *     maxDistance.
2848     *   </li>
2849     * </ul>
2850     *
2851     * The function can be used to initialize a point-based tracker of an object.
2852     *
2853     * <b>Note:</b> If the function is called with different values A and B of the parameter qualityLevel , and
2854     * A &gt; B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2855     * with qualityLevel=B .
2856     *
2857     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2858     * @param corners Output vector of detected corners.
2859     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2860     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2861     * and all detected corners are returned.
2862     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2863     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2864     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2865     * quality measure less than the product are rejected. For example, if the best corner has the
2866     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2867     * less than 15 are rejected.
2868     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2869     * @param mask Optional region of interest. If the image is not empty (it needs to have the type
2870     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2871     * pixel neighborhood. See cornerEigenValsAndVecs .
2872     * or #cornerMinEigenVal.
2873     *
2874     * SEE:  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2875     */
2876    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask) {
2877        Mat corners_mat = corners;
2878        goodFeaturesToTrack_3(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj);
2879    }
2880
2881    /**
2882     * Determines strong corners on an image.
2883     *
2884     * The function finds the most prominent corners in the image or in the specified image region, as
2885     * described in CITE: Shi94
2886     *
2887     * <ul>
2888     *   <li>
2889     *    Function calculates the corner quality measure at every source image pixel using the
2890     *     #cornerMinEigenVal or #cornerHarris .
2891     *   </li>
2892     *   <li>
2893     *    Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2894     *     retained).
2895     *   </li>
2896     *   <li>
2897     *    The corners with the minimal eigenvalue less than
2898     *     \(\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\) are rejected.
2899     *   </li>
2900     *   <li>
2901     *    The remaining corners are sorted by the quality measure in the descending order.
2902     *   </li>
2903     *   <li>
2904     *    Function throws away each corner for which there is a stronger corner at a distance less than
2905     *     maxDistance.
2906     *   </li>
2907     * </ul>
2908     *
2909     * The function can be used to initialize a point-based tracker of an object.
2910     *
2911     * <b>Note:</b> If the function is called with different values A and B of the parameter qualityLevel , and
2912     * A &gt; B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2913     * with qualityLevel=B .
2914     *
2915     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2916     * @param corners Output vector of detected corners.
2917     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2918     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2919     * and all detected corners are returned.
2920     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2921     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2922     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2923     * quality measure less than the product are rejected. For example, if the best corner has the
2924     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2925     * less than 15 are rejected.
2926     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2927     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2928     * pixel neighborhood. See cornerEigenValsAndVecs .
2929     * or #cornerMinEigenVal.
2930     *
2931     * SEE:  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2932     */
2933    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance) {
2934        Mat corners_mat = corners;
2935        goodFeaturesToTrack_4(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance);
2936    }
2937
2938
2939    //
2940    // C++:  void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04)
2941    //
2942
2943    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, boolean useHarrisDetector, double k) {
2944        Mat corners_mat = corners;
2945        goodFeaturesToTrack_5(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector, k);
2946    }
2947
2948    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, boolean useHarrisDetector) {
2949        Mat corners_mat = corners;
2950        goodFeaturesToTrack_6(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector);
2951    }
2952
2953    public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize) {
2954        Mat corners_mat = corners;
2955        goodFeaturesToTrack_7(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize);
2956    }
2957
2958
2959    //
2960    // C++:  void cv::goodFeaturesToTrack(Mat image, Mat& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat& cornersQuality, int blockSize = 3, int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04)
2961    //
2962
2963    /**
2964     * Same as above, but returns also quality measure of the detected corners.
2965     *
2966     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2967     * @param corners Output vector of detected corners.
2968     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2969     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
2970     * and all detected corners are returned.
2971     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2972     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2973     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2974     * quality measure less than the product are rejected. For example, if the best corner has the
2975     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2976     * less than 15 are rejected.
2977     * @param minDistance Minimum possible Euclidean distance between the returned corners.
2978     * @param mask Region of interest. If the image is not empty (it needs to have the type
2979     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2980     * @param cornersQuality Output vector of quality measure of the detected corners.
2981     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
2982     * pixel neighborhood. See cornerEigenValsAndVecs .
2983     * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
2984     * See cornerEigenValsAndVecs .
2985     * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2986     * or #cornerMinEigenVal.
2987     * @param k Free parameter of the Harris detector.
2988     */
2989    public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize, boolean useHarrisDetector, double k) {
2990        goodFeaturesToTrackWithQuality_0(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize, useHarrisDetector, k);
2991    }
2992
2993    /**
2994     * Same as above, but returns also quality measure of the detected corners.
2995     *
2996     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
2997     * @param corners Output vector of detected corners.
2998     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
2999     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
3000     * and all detected corners are returned.
3001     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
3002     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
3003     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
3004     * quality measure less than the product are rejected. For example, if the best corner has the
3005     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
3006     * less than 15 are rejected.
3007     * @param minDistance Minimum possible Euclidean distance between the returned corners.
3008     * @param mask Region of interest. If the image is not empty (it needs to have the type
3009     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
3010     * @param cornersQuality Output vector of quality measure of the detected corners.
3011     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
3012     * pixel neighborhood. See cornerEigenValsAndVecs .
3013     * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
3014     * See cornerEigenValsAndVecs .
3015     * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
3016     * or #cornerMinEigenVal.
3017     */
3018    public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize, boolean useHarrisDetector) {
3019        goodFeaturesToTrackWithQuality_1(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize, useHarrisDetector);
3020    }
3021
3022    /**
3023     * Same as above, but returns also quality measure of the detected corners.
3024     *
3025     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
3026     * @param corners Output vector of detected corners.
3027     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
3028     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
3029     * and all detected corners are returned.
3030     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
3031     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
3032     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
3033     * quality measure less than the product are rejected. For example, if the best corner has the
3034     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
3035     * less than 15 are rejected.
3036     * @param minDistance Minimum possible Euclidean distance between the returned corners.
3037     * @param mask Region of interest. If the image is not empty (it needs to have the type
3038     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
3039     * @param cornersQuality Output vector of quality measure of the detected corners.
3040     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
3041     * pixel neighborhood. See cornerEigenValsAndVecs .
3042     * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
3043     * See cornerEigenValsAndVecs .
3044     * or #cornerMinEigenVal.
3045     */
3046    public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize) {
3047        goodFeaturesToTrackWithQuality_2(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize);
3048    }
3049
3050    /**
3051     * Same as above, but returns also quality measure of the detected corners.
3052     *
3053     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
3054     * @param corners Output vector of detected corners.
3055     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
3056     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
3057     * and all detected corners are returned.
3058     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
3059     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
3060     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
3061     * quality measure less than the product are rejected. For example, if the best corner has the
3062     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
3063     * less than 15 are rejected.
3064     * @param minDistance Minimum possible Euclidean distance between the returned corners.
3065     * @param mask Region of interest. If the image is not empty (it needs to have the type
3066     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
3067     * @param cornersQuality Output vector of quality measure of the detected corners.
3068     * @param blockSize Size of an average block for computing a derivative covariation matrix over each
3069     * pixel neighborhood. See cornerEigenValsAndVecs .
3070     * See cornerEigenValsAndVecs .
3071     * or #cornerMinEigenVal.
3072     */
3073    public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize) {
3074        goodFeaturesToTrackWithQuality_3(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize);
3075    }
3076
3077    /**
3078     * Same as above, but returns also quality measure of the detected corners.
3079     *
3080     * @param image Input 8-bit or floating-point 32-bit, single-channel image.
3081     * @param corners Output vector of detected corners.
3082     * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
3083     * the strongest of them is returned. {@code maxCorners &lt;= 0} implies that no limit on the maximum is set
3084     * and all detected corners are returned.
3085     * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
3086     * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
3087     * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
3088     * quality measure less than the product are rejected. For example, if the best corner has the
3089     * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
3090     * less than 15 are rejected.
3091     * @param minDistance Minimum possible Euclidean distance between the returned corners.
3092     * @param mask Region of interest. If the image is not empty (it needs to have the type
3093     * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
3094     * @param cornersQuality Output vector of quality measure of the detected corners.
3095     * pixel neighborhood. See cornerEigenValsAndVecs .
3096     * See cornerEigenValsAndVecs .
3097     * or #cornerMinEigenVal.
3098     */
3099    public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality) {
3100        goodFeaturesToTrackWithQuality_4(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj);
3101    }
3102
3103
3104    //
3105    // C++:  void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
3106    //
3107
3108    /**
3109     * Finds lines in a binary image using the standard Hough transform.
3110     *
3111     * The function implements the standard or standard multi-scale Hough transform algorithm for line
3112     * detection. See &lt;http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm&gt; for a good explanation of Hough
3113     * transform.
3114     *
3115     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3116     * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
3117     * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\) . \(\rho\) is the distance from the coordinate origin \((0,0)\) (top-left corner of
3118     * the image). \(\theta\) is the line rotation angle in radians (
3119     * \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ).
3120     * \(\textrm{votes}\) is the value of accumulator.
3121     * @param rho Distance resolution of the accumulator in pixels.
3122     * @param theta Angle resolution of the accumulator in radians.
3123     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3124     * votes ( \(&gt;\texttt{threshold}\) ).
3125     * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
3126     * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
3127     * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
3128     * parameters should be positive.
3129     * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
3130     * @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
3131     * Must fall between 0 and max_theta.
3132     * @param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
3133     * Must fall between min_theta and CV_PI.
3134     */
3135    public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta) {
3136        HoughLines_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta, max_theta);
3137    }
3138
3139    /**
3140     * Finds lines in a binary image using the standard Hough transform.
3141     *
3142     * The function implements the standard or standard multi-scale Hough transform algorithm for line
3143     * detection. See &lt;http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm&gt; for a good explanation of Hough
3144     * transform.
3145     *
3146     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3147     * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
3148     * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\) . \(\rho\) is the distance from the coordinate origin \((0,0)\) (top-left corner of
3149     * the image). \(\theta\) is the line rotation angle in radians (
3150     * \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ).
3151     * \(\textrm{votes}\) is the value of accumulator.
3152     * @param rho Distance resolution of the accumulator in pixels.
3153     * @param theta Angle resolution of the accumulator in radians.
3154     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3155     * votes ( \(&gt;\texttt{threshold}\) ).
3156     * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
3157     * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
3158     * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
3159     * parameters should be positive.
3160     * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
3161     * @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
3162     * Must fall between 0 and max_theta.
3163     * Must fall between min_theta and CV_PI.
3164     */
3165    public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta) {
3166        HoughLines_1(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta);
3167    }
3168
3169    /**
3170     * Finds lines in a binary image using the standard Hough transform.
3171     *
3172     * The function implements the standard or standard multi-scale Hough transform algorithm for line
3173     * detection. See &lt;http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm&gt; for a good explanation of Hough
3174     * transform.
3175     *
3176     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3177     * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
3178     * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\) . \(\rho\) is the distance from the coordinate origin \((0,0)\) (top-left corner of
3179     * the image). \(\theta\) is the line rotation angle in radians (
3180     * \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ).
3181     * \(\textrm{votes}\) is the value of accumulator.
3182     * @param rho Distance resolution of the accumulator in pixels.
3183     * @param theta Angle resolution of the accumulator in radians.
3184     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3185     * votes ( \(&gt;\texttt{threshold}\) ).
3186     * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
3187     * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
3188     * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
3189     * parameters should be positive.
3190     * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
3191     * Must fall between 0 and max_theta.
3192     * Must fall between min_theta and CV_PI.
3193     */
3194    public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) {
3195        HoughLines_2(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn);
3196    }
3197
3198    /**
3199     * Finds lines in a binary image using the standard Hough transform.
3200     *
3201     * The function implements the standard or standard multi-scale Hough transform algorithm for line
3202     * detection. See &lt;http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm&gt; for a good explanation of Hough
3203     * transform.
3204     *
3205     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3206     * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
3207     * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\) . \(\rho\) is the distance from the coordinate origin \((0,0)\) (top-left corner of
3208     * the image). \(\theta\) is the line rotation angle in radians (
3209     * \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ).
3210     * \(\textrm{votes}\) is the value of accumulator.
3211     * @param rho Distance resolution of the accumulator in pixels.
3212     * @param theta Angle resolution of the accumulator in radians.
3213     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3214     * votes ( \(&gt;\texttt{threshold}\) ).
3215     * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
3216     * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
3217     * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
3218     * parameters should be positive.
3219     * Must fall between 0 and max_theta.
3220     * Must fall between min_theta and CV_PI.
3221     */
3222    public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn) {
3223        HoughLines_3(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn);
3224    }
3225
3226    /**
3227     * Finds lines in a binary image using the standard Hough transform.
3228     *
3229     * The function implements the standard or standard multi-scale Hough transform algorithm for line
3230     * detection. See &lt;http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm&gt; for a good explanation of Hough
3231     * transform.
3232     *
3233     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3234     * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
3235     * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\) . \(\rho\) is the distance from the coordinate origin \((0,0)\) (top-left corner of
3236     * the image). \(\theta\) is the line rotation angle in radians (
3237     * \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ).
3238     * \(\textrm{votes}\) is the value of accumulator.
3239     * @param rho Distance resolution of the accumulator in pixels.
3240     * @param theta Angle resolution of the accumulator in radians.
3241     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3242     * votes ( \(&gt;\texttt{threshold}\) ).
3243     * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
3244     * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
3245     * parameters should be positive.
3246     * Must fall between 0 and max_theta.
3247     * Must fall between min_theta and CV_PI.
3248     */
3249    public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold) {
3250        HoughLines_4(image.nativeObj, lines.nativeObj, rho, theta, threshold);
3251    }
3252
3253
3254    //
3255    // C++:  void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0)
3256    //
3257
3258    /**
3259     * Finds line segments in a binary image using the probabilistic Hough transform.
3260     *
3261     * The function implements the probabilistic Hough transform algorithm for line detection, described
3262     * in CITE: Matas00
3263     *
3264     * See the line detection example below:
3265     * INCLUDE: snippets/imgproc_HoughLinesP.cpp
3266     * This is a sample picture the function parameters have been tuned for:
3267     *
3268     * ![image](pics/building.jpg)
3269     *
3270     * And this is the output of the above program in case of the probabilistic Hough transform:
3271     *
3272     * ![image](pics/houghp.png)
3273     *
3274     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3275     * @param lines Output vector of lines. Each line is represented by a 4-element vector
3276     * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected
3277     * line segment.
3278     * @param rho Distance resolution of the accumulator in pixels.
3279     * @param theta Angle resolution of the accumulator in radians.
3280     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3281     * votes ( \(&gt;\texttt{threshold}\) ).
3282     * @param minLineLength Minimum line length. Line segments shorter than that are rejected.
3283     * @param maxLineGap Maximum allowed gap between points on the same line to link them.
3284     *
3285     * SEE: LineSegmentDetector
3286     */
3287    public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) {
3288        HoughLinesP_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength, maxLineGap);
3289    }
3290
3291    /**
3292     * Finds line segments in a binary image using the probabilistic Hough transform.
3293     *
3294     * The function implements the probabilistic Hough transform algorithm for line detection, described
3295     * in CITE: Matas00
3296     *
3297     * See the line detection example below:
3298     * INCLUDE: snippets/imgproc_HoughLinesP.cpp
3299     * This is a sample picture the function parameters have been tuned for:
3300     *
3301     * ![image](pics/building.jpg)
3302     *
3303     * And this is the output of the above program in case of the probabilistic Hough transform:
3304     *
3305     * ![image](pics/houghp.png)
3306     *
3307     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3308     * @param lines Output vector of lines. Each line is represented by a 4-element vector
3309     * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected
3310     * line segment.
3311     * @param rho Distance resolution of the accumulator in pixels.
3312     * @param theta Angle resolution of the accumulator in radians.
3313     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3314     * votes ( \(&gt;\texttt{threshold}\) ).
3315     * @param minLineLength Minimum line length. Line segments shorter than that are rejected.
3316     *
3317     * SEE: LineSegmentDetector
3318     */
3319    public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength) {
3320        HoughLinesP_1(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength);
3321    }
3322
3323    /**
3324     * Finds line segments in a binary image using the probabilistic Hough transform.
3325     *
3326     * The function implements the probabilistic Hough transform algorithm for line detection, described
3327     * in CITE: Matas00
3328     *
3329     * See the line detection example below:
3330     * INCLUDE: snippets/imgproc_HoughLinesP.cpp
3331     * This is a sample picture the function parameters have been tuned for:
3332     *
3333     * ![image](pics/building.jpg)
3334     *
3335     * And this is the output of the above program in case of the probabilistic Hough transform:
3336     *
3337     * ![image](pics/houghp.png)
3338     *
3339     * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
3340     * @param lines Output vector of lines. Each line is represented by a 4-element vector
3341     * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected
3342     * line segment.
3343     * @param rho Distance resolution of the accumulator in pixels.
3344     * @param theta Angle resolution of the accumulator in radians.
3345     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3346     * votes ( \(&gt;\texttt{threshold}\) ).
3347     *
3348     * SEE: LineSegmentDetector
3349     */
3350    public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold) {
3351        HoughLinesP_2(image.nativeObj, lines.nativeObj, rho, theta, threshold);
3352    }
3353
3354
3355    //
3356    // C++:  void cv::HoughLinesPointSet(Mat point, Mat& lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step)
3357    //
3358
3359    /**
3360     * Finds lines in a set of points using the standard Hough transform.
3361     *
3362     * The function finds lines in a set of points using a modification of the Hough transform.
3363     * INCLUDE: snippets/imgproc_HoughLinesPointSet.cpp
3364     * @param point Input vector of points. Each vector must be encoded as a Point vector \((x,y)\). Type must be CV_32FC2 or CV_32SC2.
3365     * @param lines Output vector of found lines. Each vector is encoded as a vector&lt;Vec3d&gt; \((votes, rho, theta)\).
3366     * The larger the value of 'votes', the higher the reliability of the Hough line.
3367     * @param lines_max Max count of Hough lines.
3368     * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
3369     * votes ( \(&gt;\texttt{threshold}\) ).
3370     * @param min_rho Minimum value for \(\rho\) for the accumulator (Note: \(\rho\) can be negative. The absolute value \(|\rho|\) is the distance of a line to the origin.).
3371     * @param max_rho Maximum value for \(\rho\) for the accumulator.
3372     * @param rho_step Distance resolution of the accumulator.
3373     * @param min_theta Minimum angle value of the accumulator in radians.
3374     * @param max_theta Maximum angle value of the accumulator in radians.
3375     * @param theta_step Angle resolution of the accumulator in radians.
3376     */
3377    public static void HoughLinesPointSet(Mat point, Mat lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) {
3378        HoughLinesPointSet_0(point.nativeObj, lines.nativeObj, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step);
3379    }
3380
3381
3382    //
3383    // C++:  void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0)
3384    //
3385
3386    /**
3387     * Finds circles in a grayscale image using the Hough transform.
3388     *
3389     * The function finds circles in a grayscale image using a modification of the Hough transform.
3390     *
3391     * Example: :
3392     * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
3393     *
3394     * <b>Note:</b> Usually the function detects the centers of circles well. However, it may fail to find correct
3395     * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
3396     * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
3397     * to return centers only without radius search, and find the correct radius using an additional procedure.
3398     *
3399     * It also helps to smooth image a bit unless it's already soft. For example,
3400     * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
3401     *
3402     * @param image 8-bit, single-channel, grayscale input image.
3403     * @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
3404     * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) .
3405     * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
3406     * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
3407     * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
3408     * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
3409     * unless some small very circles need to be detected.
3410     * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
3411     * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
3412     * too large, some circles may be missed.
3413     * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
3414     * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
3415     * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
3416     * shough normally be higher, such as 300 or normally exposed and contrasty images.
3417     * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
3418     * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
3419     * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
3420     * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
3421     * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
3422     * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
3423     * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
3424     * @param minRadius Minimum circle radius.
3425     * @param maxRadius Maximum circle radius. If &lt;= 0, uses the maximum image dimension. If &lt; 0, #HOUGH_GRADIENT returns
3426     * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
3427     *
3428     * SEE: fitEllipse, minEnclosingCircle
3429     */
3430    public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) {
3431        HoughCircles_0(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius, maxRadius);
3432    }
3433
3434    /**
3435     * Finds circles in a grayscale image using the Hough transform.
3436     *
3437     * The function finds circles in a grayscale image using a modification of the Hough transform.
3438     *
3439     * Example: :
3440     * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
3441     *
3442     * <b>Note:</b> Usually the function detects the centers of circles well. However, it may fail to find correct
3443     * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
3444     * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
3445     * to return centers only without radius search, and find the correct radius using an additional procedure.
3446     *
3447     * It also helps to smooth image a bit unless it's already soft. For example,
3448     * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
3449     *
3450     * @param image 8-bit, single-channel, grayscale input image.
3451     * @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
3452     * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) .
3453     * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
3454     * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
3455     * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
3456     * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
3457     * unless some small very circles need to be detected.
3458     * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
3459     * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
3460     * too large, some circles may be missed.
3461     * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
3462     * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
3463     * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
3464     * shough normally be higher, such as 300 or normally exposed and contrasty images.
3465     * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
3466     * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
3467     * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
3468     * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
3469     * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
3470     * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
3471     * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
3472     * @param minRadius Minimum circle radius.
3473     * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
3474     *
3475     * SEE: fitEllipse, minEnclosingCircle
3476     */
3477    public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius) {
3478        HoughCircles_1(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius);
3479    }
3480
3481    /**
3482     * Finds circles in a grayscale image using the Hough transform.
3483     *
3484     * The function finds circles in a grayscale image using a modification of the Hough transform.
3485     *
3486     * Example: :
3487     * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
3488     *
3489     * <b>Note:</b> Usually the function detects the centers of circles well. However, it may fail to find correct
3490     * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
3491     * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
3492     * to return centers only without radius search, and find the correct radius using an additional procedure.
3493     *
3494     * It also helps to smooth image a bit unless it's already soft. For example,
3495     * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
3496     *
3497     * @param image 8-bit, single-channel, grayscale input image.
3498     * @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
3499     * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) .
3500     * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
3501     * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
3502     * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
3503     * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
3504     * unless some small very circles need to be detected.
3505     * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
3506     * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
3507     * too large, some circles may be missed.
3508     * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
3509     * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
3510     * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
3511     * shough normally be higher, such as 300 or normally exposed and contrasty images.
3512     * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
3513     * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
3514     * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
3515     * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
3516     * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
3517     * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
3518     * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
3519     * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
3520     *
3521     * SEE: fitEllipse, minEnclosingCircle
3522     */
3523    public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2) {
3524        HoughCircles_2(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2);
3525    }
3526
3527    /**
3528     * Finds circles in a grayscale image using the Hough transform.
3529     *
3530     * The function finds circles in a grayscale image using a modification of the Hough transform.
3531     *
3532     * Example: :
3533     * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
3534     *
3535     * <b>Note:</b> Usually the function detects the centers of circles well. However, it may fail to find correct
3536     * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
3537     * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
3538     * to return centers only without radius search, and find the correct radius using an additional procedure.
3539     *
3540     * It also helps to smooth image a bit unless it's already soft. For example,
3541     * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
3542     *
3543     * @param image 8-bit, single-channel, grayscale input image.
3544     * @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
3545     * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) .
3546     * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
3547     * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
3548     * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
3549     * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
3550     * unless some small very circles need to be detected.
3551     * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
3552     * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
3553     * too large, some circles may be missed.
3554     * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
3555     * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
3556     * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
3557     * shough normally be higher, such as 300 or normally exposed and contrasty images.
3558     * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
3559     * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
3560     * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
3561     * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
3562     * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
3563     * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
3564     * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
3565     *
3566     * SEE: fitEllipse, minEnclosingCircle
3567     */
3568    public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1) {
3569        HoughCircles_3(image.nativeObj, circles.nativeObj, method, dp, minDist, param1);
3570    }
3571
3572    /**
3573     * Finds circles in a grayscale image using the Hough transform.
3574     *
3575     * The function finds circles in a grayscale image using a modification of the Hough transform.
3576     *
3577     * Example: :
3578     * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
3579     *
3580     * <b>Note:</b> Usually the function detects the centers of circles well. However, it may fail to find correct
3581     * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
3582     * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
3583     * to return centers only without radius search, and find the correct radius using an additional procedure.
3584     *
3585     * It also helps to smooth image a bit unless it's already soft. For example,
3586     * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
3587     *
3588     * @param image 8-bit, single-channel, grayscale input image.
3589     * @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
3590     * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) .
3591     * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
3592     * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
3593     * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
3594     * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
3595     * unless some small very circles need to be detected.
3596     * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
3597     * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
3598     * too large, some circles may be missed.
3599     * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
3600     * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
3601     * shough normally be higher, such as 300 or normally exposed and contrasty images.
3602     * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
3603     * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
3604     * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
3605     * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
3606     * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
3607     * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
3608     * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
3609     *
3610     * SEE: fitEllipse, minEnclosingCircle
3611     */
3612    public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist) {
3613        HoughCircles_4(image.nativeObj, circles.nativeObj, method, dp, minDist);
3614    }
3615
3616
3617    //
3618    // C++:  void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
3619    //
3620
3621    /**
3622     * Erodes an image by using a specific structuring element.
3623     *
3624     * The function erodes the source image using the specified structuring element that determines the
3625     * shape of a pixel neighborhood over which the minimum is taken:
3626     *
3627     * \(\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3628     *
3629     * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
3630     * case of multi-channel images, each channel is processed independently.
3631     *
3632     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3633     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3634     * @param dst output image of the same size and type as src.
3635     * @param kernel structuring element used for erosion; if {@code element=Mat()}, a {@code 3 x 3} rectangular
3636     * structuring element is used. Kernel can be created using #getStructuringElement.
3637     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3638     * anchor is at the element center.
3639     * @param iterations number of times erosion is applied.
3640     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
3641     * @param borderValue border value in case of a constant border
3642     * SEE:  dilate, morphologyEx, getStructuringElement
3643     */
3644    public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) {
3645        erode_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
3646    }
3647
3648    /**
3649     * Erodes an image by using a specific structuring element.
3650     *
3651     * The function erodes the source image using the specified structuring element that determines the
3652     * shape of a pixel neighborhood over which the minimum is taken:
3653     *
3654     * \(\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3655     *
3656     * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
3657     * case of multi-channel images, each channel is processed independently.
3658     *
3659     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3660     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3661     * @param dst output image of the same size and type as src.
3662     * @param kernel structuring element used for erosion; if {@code element=Mat()}, a {@code 3 x 3} rectangular
3663     * structuring element is used. Kernel can be created using #getStructuringElement.
3664     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3665     * anchor is at the element center.
3666     * @param iterations number of times erosion is applied.
3667     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
3668     * SEE:  dilate, morphologyEx, getStructuringElement
3669     */
3670    public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) {
3671        erode_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType);
3672    }
3673
3674    /**
3675     * Erodes an image by using a specific structuring element.
3676     *
3677     * The function erodes the source image using the specified structuring element that determines the
3678     * shape of a pixel neighborhood over which the minimum is taken:
3679     *
3680     * \(\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3681     *
3682     * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
3683     * case of multi-channel images, each channel is processed independently.
3684     *
3685     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3686     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3687     * @param dst output image of the same size and type as src.
3688     * @param kernel structuring element used for erosion; if {@code element=Mat()}, a {@code 3 x 3} rectangular
3689     * structuring element is used. Kernel can be created using #getStructuringElement.
3690     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3691     * anchor is at the element center.
3692     * @param iterations number of times erosion is applied.
3693     * SEE:  dilate, morphologyEx, getStructuringElement
3694     */
3695    public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) {
3696        erode_2(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations);
3697    }
3698
3699    /**
3700     * Erodes an image by using a specific structuring element.
3701     *
3702     * The function erodes the source image using the specified structuring element that determines the
3703     * shape of a pixel neighborhood over which the minimum is taken:
3704     *
3705     * \(\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3706     *
3707     * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
3708     * case of multi-channel images, each channel is processed independently.
3709     *
3710     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3711     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3712     * @param dst output image of the same size and type as src.
3713     * @param kernel structuring element used for erosion; if {@code element=Mat()}, a {@code 3 x 3} rectangular
3714     * structuring element is used. Kernel can be created using #getStructuringElement.
3715     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3716     * anchor is at the element center.
3717     * SEE:  dilate, morphologyEx, getStructuringElement
3718     */
3719    public static void erode(Mat src, Mat dst, Mat kernel, Point anchor) {
3720        erode_3(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y);
3721    }
3722
3723    /**
3724     * Erodes an image by using a specific structuring element.
3725     *
3726     * The function erodes the source image using the specified structuring element that determines the
3727     * shape of a pixel neighborhood over which the minimum is taken:
3728     *
3729     * \(\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3730     *
3731     * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
3732     * case of multi-channel images, each channel is processed independently.
3733     *
3734     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3735     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3736     * @param dst output image of the same size and type as src.
3737     * @param kernel structuring element used for erosion; if {@code element=Mat()}, a {@code 3 x 3} rectangular
3738     * structuring element is used. Kernel can be created using #getStructuringElement.
3739     * anchor is at the element center.
3740     * SEE:  dilate, morphologyEx, getStructuringElement
3741     */
3742    public static void erode(Mat src, Mat dst, Mat kernel) {
3743        erode_4(src.nativeObj, dst.nativeObj, kernel.nativeObj);
3744    }
3745
3746
3747    //
3748    // C++:  void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
3749    //
3750
3751    /**
3752     * Dilates an image by using a specific structuring element.
3753     *
3754     * The function dilates the source image using the specified structuring element that determines the
3755     * shape of a pixel neighborhood over which the maximum is taken:
3756     * \(\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3757     *
3758     * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
3759     * case of multi-channel images, each channel is processed independently.
3760     *
3761     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3762     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3763     * @param dst output image of the same size and type as src.
3764     * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
3765     * structuring element is used. Kernel can be created using #getStructuringElement
3766     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3767     * anchor is at the element center.
3768     * @param iterations number of times dilation is applied.
3769     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
3770     * @param borderValue border value in case of a constant border
3771     * SEE:  erode, morphologyEx, getStructuringElement
3772     */
3773    public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) {
3774        dilate_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
3775    }
3776
3777    /**
3778     * Dilates an image by using a specific structuring element.
3779     *
3780     * The function dilates the source image using the specified structuring element that determines the
3781     * shape of a pixel neighborhood over which the maximum is taken:
3782     * \(\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3783     *
3784     * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
3785     * case of multi-channel images, each channel is processed independently.
3786     *
3787     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3788     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3789     * @param dst output image of the same size and type as src.
3790     * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
3791     * structuring element is used. Kernel can be created using #getStructuringElement
3792     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3793     * anchor is at the element center.
3794     * @param iterations number of times dilation is applied.
3795     * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
3796     * SEE:  erode, morphologyEx, getStructuringElement
3797     */
3798    public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) {
3799        dilate_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType);
3800    }
3801
3802    /**
3803     * Dilates an image by using a specific structuring element.
3804     *
3805     * The function dilates the source image using the specified structuring element that determines the
3806     * shape of a pixel neighborhood over which the maximum is taken:
3807     * \(\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3808     *
3809     * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
3810     * case of multi-channel images, each channel is processed independently.
3811     *
3812     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3813     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3814     * @param dst output image of the same size and type as src.
3815     * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
3816     * structuring element is used. Kernel can be created using #getStructuringElement
3817     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3818     * anchor is at the element center.
3819     * @param iterations number of times dilation is applied.
3820     * SEE:  erode, morphologyEx, getStructuringElement
3821     */
3822    public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) {
3823        dilate_2(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations);
3824    }
3825
3826    /**
3827     * Dilates an image by using a specific structuring element.
3828     *
3829     * The function dilates the source image using the specified structuring element that determines the
3830     * shape of a pixel neighborhood over which the maximum is taken:
3831     * \(\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3832     *
3833     * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
3834     * case of multi-channel images, each channel is processed independently.
3835     *
3836     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3837     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3838     * @param dst output image of the same size and type as src.
3839     * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
3840     * structuring element is used. Kernel can be created using #getStructuringElement
3841     * @param anchor position of the anchor within the element; default value (-1, -1) means that the
3842     * anchor is at the element center.
3843     * SEE:  erode, morphologyEx, getStructuringElement
3844     */
3845    public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor) {
3846        dilate_3(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y);
3847    }
3848
3849    /**
3850     * Dilates an image by using a specific structuring element.
3851     *
3852     * The function dilates the source image using the specified structuring element that determines the
3853     * shape of a pixel neighborhood over which the maximum is taken:
3854     * \(\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\)
3855     *
3856     * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
3857     * case of multi-channel images, each channel is processed independently.
3858     *
3859     * @param src input image; the number of channels can be arbitrary, but the depth should be one of
3860     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3861     * @param dst output image of the same size and type as src.
3862     * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
3863     * structuring element is used. Kernel can be created using #getStructuringElement
3864     * anchor is at the element center.
3865     * SEE:  erode, morphologyEx, getStructuringElement
3866     */
3867    public static void dilate(Mat src, Mat dst, Mat kernel) {
3868        dilate_4(src.nativeObj, dst.nativeObj, kernel.nativeObj);
3869    }
3870
3871
3872    //
3873    // C++:  void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
3874    //
3875
3876    /**
3877     * Performs advanced morphological transformations.
3878     *
3879     * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
3880     * basic operations.
3881     *
3882     * Any of the operations can be done in-place. In case of multi-channel images, each channel is
3883     * processed independently.
3884     *
3885     * @param src Source image. The number of channels can be arbitrary. The depth should be one of
3886     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3887     * @param dst Destination image of the same size and type as source image.
3888     * @param op Type of a morphological operation, see #MorphTypes
3889     * @param kernel Structuring element. It can be created using #getStructuringElement.
3890     * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
3891     * kernel center.
3892     * @param iterations Number of times erosion and dilation are applied.
3893     * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
3894     * @param borderValue Border value in case of a constant border. The default value has a special
3895     * meaning.
3896     * SEE:  dilate, erode, getStructuringElement
3897     * <b>Note:</b> The number of iterations is the number of times erosion or dilatation operation will be applied.
3898     * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
3899     * successively: erode -&gt; erode -&gt; dilate -&gt; dilate (and not erode -&gt; dilate -&gt; erode -&gt; dilate).
3900     */
3901    public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) {
3902        morphologyEx_0(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
3903    }
3904
3905    /**
3906     * Performs advanced morphological transformations.
3907     *
3908     * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
3909     * basic operations.
3910     *
3911     * Any of the operations can be done in-place. In case of multi-channel images, each channel is
3912     * processed independently.
3913     *
3914     * @param src Source image. The number of channels can be arbitrary. The depth should be one of
3915     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3916     * @param dst Destination image of the same size and type as source image.
3917     * @param op Type of a morphological operation, see #MorphTypes
3918     * @param kernel Structuring element. It can be created using #getStructuringElement.
3919     * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
3920     * kernel center.
3921     * @param iterations Number of times erosion and dilation are applied.
3922     * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
3923     * meaning.
3924     * SEE:  dilate, erode, getStructuringElement
3925     * <b>Note:</b> The number of iterations is the number of times erosion or dilatation operation will be applied.
3926     * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
3927     * successively: erode -&gt; erode -&gt; dilate -&gt; dilate (and not erode -&gt; dilate -&gt; erode -&gt; dilate).
3928     */
3929    public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType) {
3930        morphologyEx_1(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType);
3931    }
3932
3933    /**
3934     * Performs advanced morphological transformations.
3935     *
3936     * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
3937     * basic operations.
3938     *
3939     * Any of the operations can be done in-place. In case of multi-channel images, each channel is
3940     * processed independently.
3941     *
3942     * @param src Source image. The number of channels can be arbitrary. The depth should be one of
3943     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3944     * @param dst Destination image of the same size and type as source image.
3945     * @param op Type of a morphological operation, see #MorphTypes
3946     * @param kernel Structuring element. It can be created using #getStructuringElement.
3947     * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
3948     * kernel center.
3949     * @param iterations Number of times erosion and dilation are applied.
3950     * meaning.
3951     * SEE:  dilate, erode, getStructuringElement
3952     * <b>Note:</b> The number of iterations is the number of times erosion or dilatation operation will be applied.
3953     * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
3954     * successively: erode -&gt; erode -&gt; dilate -&gt; dilate (and not erode -&gt; dilate -&gt; erode -&gt; dilate).
3955     */
3956    public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations) {
3957        morphologyEx_2(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations);
3958    }
3959
3960    /**
3961     * Performs advanced morphological transformations.
3962     *
3963     * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
3964     * basic operations.
3965     *
3966     * Any of the operations can be done in-place. In case of multi-channel images, each channel is
3967     * processed independently.
3968     *
3969     * @param src Source image. The number of channels can be arbitrary. The depth should be one of
3970     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3971     * @param dst Destination image of the same size and type as source image.
3972     * @param op Type of a morphological operation, see #MorphTypes
3973     * @param kernel Structuring element. It can be created using #getStructuringElement.
3974     * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
3975     * kernel center.
3976     * meaning.
3977     * SEE:  dilate, erode, getStructuringElement
3978     * <b>Note:</b> The number of iterations is the number of times erosion or dilatation operation will be applied.
3979     * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
3980     * successively: erode -&gt; erode -&gt; dilate -&gt; dilate (and not erode -&gt; dilate -&gt; erode -&gt; dilate).
3981     */
3982    public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor) {
3983        morphologyEx_3(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y);
3984    }
3985
3986    /**
3987     * Performs advanced morphological transformations.
3988     *
3989     * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
3990     * basic operations.
3991     *
3992     * Any of the operations can be done in-place. In case of multi-channel images, each channel is
3993     * processed independently.
3994     *
3995     * @param src Source image. The number of channels can be arbitrary. The depth should be one of
3996     * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
3997     * @param dst Destination image of the same size and type as source image.
3998     * @param op Type of a morphological operation, see #MorphTypes
3999     * @param kernel Structuring element. It can be created using #getStructuringElement.
4000     * kernel center.
4001     * meaning.
4002     * SEE:  dilate, erode, getStructuringElement
4003     * <b>Note:</b> The number of iterations is the number of times erosion or dilatation operation will be applied.
4004     * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
4005     * successively: erode -&gt; erode -&gt; dilate -&gt; dilate (and not erode -&gt; dilate -&gt; erode -&gt; dilate).
4006     */
4007    public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel) {
4008        morphologyEx_4(src.nativeObj, dst.nativeObj, op, kernel.nativeObj);
4009    }
4010
4011
4012    //
4013    // C++:  void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR)
4014    //
4015
4016    /**
4017     * Resizes an image.
4018     *
4019     * The function resize resizes the image src down to or up to the specified size. Note that the
4020     * initial dst type or size are not taken into account. Instead, the size and type are derived from
4021     * the {@code src},{@code dsize},{@code fx}, and {@code fy}. If you want to resize src so that it fits the pre-created dst,
4022     * you may call the function as follows:
4023     * <code>
4024     *     // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
4025     *     resize(src, dst, dst.size(), 0, 0, interpolation);
4026     * </code>
4027     * If you want to decimate the image by factor of 2 in each direction, you can call the function this
4028     * way:
4029     * <code>
4030     *     // specify fx and fy and let the function compute the destination image size.
4031     *     resize(src, dst, Size(), 0.5, 0.5, interpolation);
4032     * </code>
4033     * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
4034     * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
4035     * (faster but still looks OK).
4036     *
4037     * @param src input image.
4038     * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
4039     * src.size(), fx, and fy; the type of dst is the same as of src.
4040     * @param dsize output image size; if it equals zero ({@code None} in Python), it is computed as:
4041     *  \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\)
4042     *  Either dsize or both fx and fy must be non-zero.
4043     * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
4044     * \(\texttt{(double)dsize.width/src.cols}\)
4045     * @param fy scale factor along the vertical axis; when it equals 0, it is computed as
4046     * \(\texttt{(double)dsize.height/src.rows}\)
4047     * @param interpolation interpolation method, see #InterpolationFlags
4048     *
4049     * SEE:  warpAffine, warpPerspective, remap
4050     */
4051    public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interpolation) {
4052        resize_0(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy, interpolation);
4053    }
4054
4055    /**
4056     * Resizes an image.
4057     *
4058     * The function resize resizes the image src down to or up to the specified size. Note that the
4059     * initial dst type or size are not taken into account. Instead, the size and type are derived from
4060     * the {@code src},{@code dsize},{@code fx}, and {@code fy}. If you want to resize src so that it fits the pre-created dst,
4061     * you may call the function as follows:
4062     * <code>
4063     *     // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
4064     *     resize(src, dst, dst.size(), 0, 0, interpolation);
4065     * </code>
4066     * If you want to decimate the image by factor of 2 in each direction, you can call the function this
4067     * way:
4068     * <code>
4069     *     // specify fx and fy and let the function compute the destination image size.
4070     *     resize(src, dst, Size(), 0.5, 0.5, interpolation);
4071     * </code>
4072     * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
4073     * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
4074     * (faster but still looks OK).
4075     *
4076     * @param src input image.
4077     * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
4078     * src.size(), fx, and fy; the type of dst is the same as of src.
4079     * @param dsize output image size; if it equals zero ({@code None} in Python), it is computed as:
4080     *  \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\)
4081     *  Either dsize or both fx and fy must be non-zero.
4082     * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
4083     * \(\texttt{(double)dsize.width/src.cols}\)
4084     * @param fy scale factor along the vertical axis; when it equals 0, it is computed as
4085     * \(\texttt{(double)dsize.height/src.rows}\)
4086     *
4087     * SEE:  warpAffine, warpPerspective, remap
4088     */
4089    public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy) {
4090        resize_1(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy);
4091    }
4092
4093    /**
4094     * Resizes an image.
4095     *
4096     * The function resize resizes the image src down to or up to the specified size. Note that the
4097     * initial dst type or size are not taken into account. Instead, the size and type are derived from
4098     * the {@code src},{@code dsize},{@code fx}, and {@code fy}. If you want to resize src so that it fits the pre-created dst,
4099     * you may call the function as follows:
4100     * <code>
4101     *     // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
4102     *     resize(src, dst, dst.size(), 0, 0, interpolation);
4103     * </code>
4104     * If you want to decimate the image by factor of 2 in each direction, you can call the function this
4105     * way:
4106     * <code>
4107     *     // specify fx and fy and let the function compute the destination image size.
4108     *     resize(src, dst, Size(), 0.5, 0.5, interpolation);
4109     * </code>
4110     * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
4111     * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
4112     * (faster but still looks OK).
4113     *
4114     * @param src input image.
4115     * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
4116     * src.size(), fx, and fy; the type of dst is the same as of src.
4117     * @param dsize output image size; if it equals zero ({@code None} in Python), it is computed as:
4118     *  \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\)
4119     *  Either dsize or both fx and fy must be non-zero.
4120     * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
4121     * \(\texttt{(double)dsize.width/src.cols}\)
4122     * \(\texttt{(double)dsize.height/src.rows}\)
4123     *
4124     * SEE:  warpAffine, warpPerspective, remap
4125     */
4126    public static void resize(Mat src, Mat dst, Size dsize, double fx) {
4127        resize_2(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx);
4128    }
4129
4130    /**
4131     * Resizes an image.
4132     *
4133     * The function resize resizes the image src down to or up to the specified size. Note that the
4134     * initial dst type or size are not taken into account. Instead, the size and type are derived from
4135     * the {@code src},{@code dsize},{@code fx}, and {@code fy}. If you want to resize src so that it fits the pre-created dst,
4136     * you may call the function as follows:
4137     * <code>
4138     *     // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
4139     *     resize(src, dst, dst.size(), 0, 0, interpolation);
4140     * </code>
4141     * If you want to decimate the image by factor of 2 in each direction, you can call the function this
4142     * way:
4143     * <code>
4144     *     // specify fx and fy and let the function compute the destination image size.
4145     *     resize(src, dst, Size(), 0.5, 0.5, interpolation);
4146     * </code>
4147     * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
4148     * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
4149     * (faster but still looks OK).
4150     *
4151     * @param src input image.
4152     * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
4153     * src.size(), fx, and fy; the type of dst is the same as of src.
4154     * @param dsize output image size; if it equals zero ({@code None} in Python), it is computed as:
4155     *  \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\)
4156     *  Either dsize or both fx and fy must be non-zero.
4157     * \(\texttt{(double)dsize.width/src.cols}\)
4158     * \(\texttt{(double)dsize.height/src.rows}\)
4159     *
4160     * SEE:  warpAffine, warpPerspective, remap
4161     */
4162    public static void resize(Mat src, Mat dst, Size dsize) {
4163        resize_3(src.nativeObj, dst.nativeObj, dsize.width, dsize.height);
4164    }
4165
4166
4167    //
4168    // C++:  void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
4169    //
4170
4171    /**
4172     * Applies an affine transformation to an image.
4173     *
4174     * The function warpAffine transforms the source image using the specified matrix:
4175     *
4176     * \(\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\)
4177     *
4178     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
4179     * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
4180     * operate in-place.
4181     *
4182     * @param src input image.
4183     * @param dst output image that has the size dsize and the same type as src .
4184     * @param M \(2\times 3\) transformation matrix.
4185     * @param dsize size of the output image.
4186     * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
4187     * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
4188     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4189     * @param borderMode pixel extrapolation method (see #BorderTypes); when
4190     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
4191     * the "outliers" in the source image are not modified by the function.
4192     * @param borderValue value used in case of a constant border; by default, it is 0.
4193     *
4194     * SEE:  warpPerspective, resize, remap, getRectSubPix, transform
4195     */
4196    public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) {
4197        warpAffine_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
4198    }
4199
4200    /**
4201     * Applies an affine transformation to an image.
4202     *
4203     * The function warpAffine transforms the source image using the specified matrix:
4204     *
4205     * \(\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\)
4206     *
4207     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
4208     * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
4209     * operate in-place.
4210     *
4211     * @param src input image.
4212     * @param dst output image that has the size dsize and the same type as src .
4213     * @param M \(2\times 3\) transformation matrix.
4214     * @param dsize size of the output image.
4215     * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
4216     * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
4217     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4218     * @param borderMode pixel extrapolation method (see #BorderTypes); when
4219     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
4220     * the "outliers" in the source image are not modified by the function.
4221     *
4222     * SEE:  warpPerspective, resize, remap, getRectSubPix, transform
4223     */
4224    public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) {
4225        warpAffine_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode);
4226    }
4227
4228    /**
4229     * Applies an affine transformation to an image.
4230     *
4231     * The function warpAffine transforms the source image using the specified matrix:
4232     *
4233     * \(\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\)
4234     *
4235     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
4236     * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
4237     * operate in-place.
4238     *
4239     * @param src input image.
4240     * @param dst output image that has the size dsize and the same type as src .
4241     * @param M \(2\times 3\) transformation matrix.
4242     * @param dsize size of the output image.
4243     * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
4244     * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
4245     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4246     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
4247     * the "outliers" in the source image are not modified by the function.
4248     *
4249     * SEE:  warpPerspective, resize, remap, getRectSubPix, transform
4250     */
4251    public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags) {
4252        warpAffine_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags);
4253    }
4254
4255    /**
4256     * Applies an affine transformation to an image.
4257     *
4258     * The function warpAffine transforms the source image using the specified matrix:
4259     *
4260     * \(\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\)
4261     *
4262     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
4263     * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
4264     * operate in-place.
4265     *
4266     * @param src input image.
4267     * @param dst output image that has the size dsize and the same type as src .
4268     * @param M \(2\times 3\) transformation matrix.
4269     * @param dsize size of the output image.
4270     * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
4271     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4272     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
4273     * the "outliers" in the source image are not modified by the function.
4274     *
4275     * SEE:  warpPerspective, resize, remap, getRectSubPix, transform
4276     */
4277    public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize) {
4278        warpAffine_3(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height);
4279    }
4280
4281
4282    //
4283    // C++:  void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
4284    //
4285
4286    /**
4287     * Applies a perspective transformation to an image.
4288     *
4289     * The function warpPerspective transforms the source image using the specified matrix:
4290     *
4291     * \(\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
4292     *      \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\)
4293     *
4294     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
4295     * and then put in the formula above instead of M. The function cannot operate in-place.
4296     *
4297     * @param src input image.
4298     * @param dst output image that has the size dsize and the same type as src .
4299     * @param M \(3\times 3\) transformation matrix.
4300     * @param dsize size of the output image.
4301     * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
4302     * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
4303     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4304     * @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
4305     * @param borderValue value used in case of a constant border; by default, it equals 0.
4306     *
4307     * SEE:  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
4308     */
4309    public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) {
4310        warpPerspective_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
4311    }
4312
4313    /**
4314     * Applies a perspective transformation to an image.
4315     *
4316     * The function warpPerspective transforms the source image using the specified matrix:
4317     *
4318     * \(\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
4319     *      \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\)
4320     *
4321     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
4322     * and then put in the formula above instead of M. The function cannot operate in-place.
4323     *
4324     * @param src input image.
4325     * @param dst output image that has the size dsize and the same type as src .
4326     * @param M \(3\times 3\) transformation matrix.
4327     * @param dsize size of the output image.
4328     * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
4329     * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
4330     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4331     * @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
4332     *
4333     * SEE:  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
4334     */
4335    public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) {
4336        warpPerspective_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode);
4337    }
4338
4339    /**
4340     * Applies a perspective transformation to an image.
4341     *
4342     * The function warpPerspective transforms the source image using the specified matrix:
4343     *
4344     * \(\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
4345     *      \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\)
4346     *
4347     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
4348     * and then put in the formula above instead of M. The function cannot operate in-place.
4349     *
4350     * @param src input image.
4351     * @param dst output image that has the size dsize and the same type as src .
4352     * @param M \(3\times 3\) transformation matrix.
4353     * @param dsize size of the output image.
4354     * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
4355     * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
4356     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4357     *
4358     * SEE:  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
4359     */
4360    public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags) {
4361        warpPerspective_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags);
4362    }
4363
4364    /**
4365     * Applies a perspective transformation to an image.
4366     *
4367     * The function warpPerspective transforms the source image using the specified matrix:
4368     *
4369     * \(\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
4370     *      \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\)
4371     *
4372     * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
4373     * and then put in the formula above instead of M. The function cannot operate in-place.
4374     *
4375     * @param src input image.
4376     * @param dst output image that has the size dsize and the same type as src .
4377     * @param M \(3\times 3\) transformation matrix.
4378     * @param dsize size of the output image.
4379     * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
4380     * \(\texttt{dst}\rightarrow\texttt{src}\) ).
4381     *
4382     * SEE:  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
4383     */
4384    public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize) {
4385        warpPerspective_3(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height);
4386    }
4387
4388
4389    //
4390    // C++:  void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
4391    //
4392
4393    /**
4394     * Applies a generic geometrical transformation to an image.
4395     *
4396     * The function remap transforms the source image using the specified map:
4397     *
4398     * \(\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\)
4399     *
4400     * where values of pixels with non-integer coordinates are computed using one of available
4401     * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps
4402     * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in
4403     * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to
4404     * convert from floating to fixed-point representations of a map is that they can yield much faster
4405     * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x),
4406     * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients.
4407     *
4408     * This function cannot operate in-place.
4409     *
4410     * @param src Source image.
4411     * @param dst Destination image. It has the same size as map1 and the same type as src .
4412     * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
4413     * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
4414     * representation to fixed-point for speed.
4415     * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
4416     * if map1 is (x,y) points), respectively.
4417     * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
4418     * and #INTER_LINEAR_EXACT are not supported by this function.
4419     * @param borderMode Pixel extrapolation method (see #BorderTypes). When
4420     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
4421     * corresponds to the "outliers" in the source image are not modified by the function.
4422     * @param borderValue Value used in case of a constant border. By default, it is 0.
4423     * <b>Note:</b>
4424     * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
4425     */
4426    public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) {
4427        remap_0(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]);
4428    }
4429
4430    /**
4431     * Applies a generic geometrical transformation to an image.
4432     *
4433     * The function remap transforms the source image using the specified map:
4434     *
4435     * \(\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\)
4436     *
4437     * where values of pixels with non-integer coordinates are computed using one of available
4438     * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps
4439     * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in
4440     * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to
4441     * convert from floating to fixed-point representations of a map is that they can yield much faster
4442     * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x),
4443     * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients.
4444     *
4445     * This function cannot operate in-place.
4446     *
4447     * @param src Source image.
4448     * @param dst Destination image. It has the same size as map1 and the same type as src .
4449     * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
4450     * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
4451     * representation to fixed-point for speed.
4452     * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
4453     * if map1 is (x,y) points), respectively.
4454     * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
4455     * and #INTER_LINEAR_EXACT are not supported by this function.
4456     * @param borderMode Pixel extrapolation method (see #BorderTypes). When
4457     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
4458     * corresponds to the "outliers" in the source image are not modified by the function.
4459     * <b>Note:</b>
4460     * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
4461     */
4462    public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode) {
4463        remap_1(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode);
4464    }
4465
4466    /**
4467     * Applies a generic geometrical transformation to an image.
4468     *
4469     * The function remap transforms the source image using the specified map:
4470     *
4471     * \(\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\)
4472     *
4473     * where values of pixels with non-integer coordinates are computed using one of available
4474     * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps
4475     * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in
4476     * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to
4477     * convert from floating to fixed-point representations of a map is that they can yield much faster
4478     * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x),
4479     * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients.
4480     *
4481     * This function cannot operate in-place.
4482     *
4483     * @param src Source image.
4484     * @param dst Destination image. It has the same size as map1 and the same type as src .
4485     * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
4486     * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
4487     * representation to fixed-point for speed.
4488     * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
4489     * if map1 is (x,y) points), respectively.
4490     * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
4491     * and #INTER_LINEAR_EXACT are not supported by this function.
4492     * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
4493     * corresponds to the "outliers" in the source image are not modified by the function.
4494     * <b>Note:</b>
4495     * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
4496     */
4497    public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation) {
4498        remap_2(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation);
4499    }
4500
4501
4502    //
4503    // C++:  void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false)
4504    //
4505
4506    /**
4507     * Converts image transformation maps from one representation to another.
4508     *
4509     * The function converts a pair of maps for remap from one representation to another. The following
4510     * options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are
4511     * supported:
4512     *
4513     * <ul>
4514     *   <li>
4515     *  \(\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). This is the
4516     * most frequently used conversion operation, in which the original floating-point maps (see #remap)
4517     * are converted to a more compact and much faster fixed-point representation. The first output array
4518     * contains the rounded coordinates and the second array (created only when nninterpolation=false )
4519     * contains indices in the interpolation tables.
4520     *   </li>
4521     * </ul>
4522     *
4523     * <ul>
4524     *   <li>
4525     *  \(\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). The same as above but
4526     * the original maps are stored in one 2-channel matrix.
4527     *   </li>
4528     * </ul>
4529     *
4530     * <ul>
4531     *   <li>
4532     *  Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
4533     * as the originals.
4534     *   </li>
4535     * </ul>
4536     *
4537     * @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
4538     * @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
4539     * respectively.
4540     * @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
4541     * @param dstmap2 The second output map.
4542     * @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
4543     * CV_32FC2 .
4544     * @param nninterpolation Flag indicating whether the fixed-point maps are used for the
4545     * nearest-neighbor or for a more complex interpolation.
4546     *
4547     * SEE:  remap, undistort, initUndistortRectifyMap
4548     */
4549    public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type, boolean nninterpolation) {
4550        convertMaps_0(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type, nninterpolation);
4551    }
4552
4553    /**
4554     * Converts image transformation maps from one representation to another.
4555     *
4556     * The function converts a pair of maps for remap from one representation to another. The following
4557     * options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are
4558     * supported:
4559     *
4560     * <ul>
4561     *   <li>
4562     *  \(\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). This is the
4563     * most frequently used conversion operation, in which the original floating-point maps (see #remap)
4564     * are converted to a more compact and much faster fixed-point representation. The first output array
4565     * contains the rounded coordinates and the second array (created only when nninterpolation=false )
4566     * contains indices in the interpolation tables.
4567     *   </li>
4568     * </ul>
4569     *
4570     * <ul>
4571     *   <li>
4572     *  \(\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). The same as above but
4573     * the original maps are stored in one 2-channel matrix.
4574     *   </li>
4575     * </ul>
4576     *
4577     * <ul>
4578     *   <li>
4579     *  Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
4580     * as the originals.
4581     *   </li>
4582     * </ul>
4583     *
4584     * @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
4585     * @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
4586     * respectively.
4587     * @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
4588     * @param dstmap2 The second output map.
4589     * @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
4590     * CV_32FC2 .
4591     * nearest-neighbor or for a more complex interpolation.
4592     *
4593     * SEE:  remap, undistort, initUndistortRectifyMap
4594     */
4595    public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type) {
4596        convertMaps_1(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type);
4597    }
4598
4599
4600    //
4601    // C++:  Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale)
4602    //
4603
4604    /**
4605     * Calculates an affine matrix of 2D rotation.
4606     *
4607     * The function calculates the following matrix:
4608     *
4609     * \(\begin{bmatrix} \alpha &amp;  \beta &amp; (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &amp;  \alpha &amp;  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\)
4610     *
4611     * where
4612     *
4613     * \(\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\)
4614     *
4615     * The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
4616     *
4617     * @param center Center of the rotation in the source image.
4618     * @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
4619     * coordinate origin is assumed to be the top-left corner).
4620     * @param scale Isotropic scale factor.
4621     *
4622     * SEE:  getAffineTransform, warpAffine, transform
4623     * @return automatically generated
4624     */
4625    public static Mat getRotationMatrix2D(Point center, double angle, double scale) {
4626        return new Mat(getRotationMatrix2D_0(center.x, center.y, angle, scale));
4627    }
4628
4629
4630    //
4631    // C++:  void cv::invertAffineTransform(Mat M, Mat& iM)
4632    //
4633
4634    /**
4635     * Inverts an affine transformation.
4636     *
4637     * The function computes an inverse affine transformation represented by \(2 \times 3\) matrix M:
4638     *
4639     * \(\begin{bmatrix} a_{11} &amp; a_{12} &amp; b_1  \\ a_{21} &amp; a_{22} &amp; b_2 \end{bmatrix}\)
4640     *
4641     * The result is also a \(2 \times 3\) matrix of the same type as M.
4642     *
4643     * @param M Original affine transformation.
4644     * @param iM Output reverse affine transformation.
4645     */
4646    public static void invertAffineTransform(Mat M, Mat iM) {
4647        invertAffineTransform_0(M.nativeObj, iM.nativeObj);
4648    }
4649
4650
4651    //
4652    // C++:  Mat cv::getPerspectiveTransform(Mat src, Mat dst, int solveMethod = DECOMP_LU)
4653    //
4654
4655    /**
4656     * Calculates a perspective transform from four pairs of the corresponding points.
4657     *
4658     * The function calculates the \(3 \times 3\) matrix of a perspective transform so that:
4659     *
4660     * \(\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\)
4661     *
4662     * where
4663     *
4664     * \(dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\)
4665     *
4666     * @param src Coordinates of quadrangle vertices in the source image.
4667     * @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
4668     * @param solveMethod method passed to cv::solve (#DecompTypes)
4669     *
4670     * SEE:  findHomography, warpPerspective, perspectiveTransform
4671     * @return automatically generated
4672     */
4673    public static Mat getPerspectiveTransform(Mat src, Mat dst, int solveMethod) {
4674        return new Mat(getPerspectiveTransform_0(src.nativeObj, dst.nativeObj, solveMethod));
4675    }
4676
4677    /**
4678     * Calculates a perspective transform from four pairs of the corresponding points.
4679     *
4680     * The function calculates the \(3 \times 3\) matrix of a perspective transform so that:
4681     *
4682     * \(\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\)
4683     *
4684     * where
4685     *
4686     * \(dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\)
4687     *
4688     * @param src Coordinates of quadrangle vertices in the source image.
4689     * @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
4690     *
4691     * SEE:  findHomography, warpPerspective, perspectiveTransform
4692     * @return automatically generated
4693     */
4694    public static Mat getPerspectiveTransform(Mat src, Mat dst) {
4695        return new Mat(getPerspectiveTransform_1(src.nativeObj, dst.nativeObj));
4696    }
4697
4698
4699    //
4700    // C++:  Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst)
4701    //
4702
4703    public static Mat getAffineTransform(MatOfPoint2f src, MatOfPoint2f dst) {
4704        Mat src_mat = src;
4705        Mat dst_mat = dst;
4706        return new Mat(getAffineTransform_0(src_mat.nativeObj, dst_mat.nativeObj));
4707    }
4708
4709
4710    //
4711    // C++:  void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1)
4712    //
4713
4714    /**
4715     * Retrieves a pixel rectangle from an image with sub-pixel accuracy.
4716     *
4717     * The function getRectSubPix extracts pixels from src:
4718     *
4719     * \(patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\)
4720     *
4721     * where the values of the pixels at non-integer coordinates are retrieved using bilinear
4722     * interpolation. Every channel of multi-channel images is processed independently. Also
4723     * the image should be a single channel or three channel image. While the center of the
4724     * rectangle must be inside the image, parts of the rectangle may be outside.
4725     *
4726     * @param image Source image.
4727     * @param patchSize Size of the extracted patch.
4728     * @param center Floating point coordinates of the center of the extracted rectangle within the
4729     * source image. The center must be inside the image.
4730     * @param patch Extracted patch that has the size patchSize and the same number of channels as src .
4731     * @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
4732     *
4733     * SEE:  warpAffine, warpPerspective
4734     */
4735    public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch, int patchType) {
4736        getRectSubPix_0(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj, patchType);
4737    }
4738
4739    /**
4740     * Retrieves a pixel rectangle from an image with sub-pixel accuracy.
4741     *
4742     * The function getRectSubPix extracts pixels from src:
4743     *
4744     * \(patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\)
4745     *
4746     * where the values of the pixels at non-integer coordinates are retrieved using bilinear
4747     * interpolation. Every channel of multi-channel images is processed independently. Also
4748     * the image should be a single channel or three channel image. While the center of the
4749     * rectangle must be inside the image, parts of the rectangle may be outside.
4750     *
4751     * @param image Source image.
4752     * @param patchSize Size of the extracted patch.
4753     * @param center Floating point coordinates of the center of the extracted rectangle within the
4754     * source image. The center must be inside the image.
4755     * @param patch Extracted patch that has the size patchSize and the same number of channels as src .
4756     *
4757     * SEE:  warpAffine, warpPerspective
4758     */
4759    public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch) {
4760        getRectSubPix_1(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj);
4761    }
4762
4763
4764    //
4765    // C++:  void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags)
4766    //
4767
4768    /**
4769     * Remaps an image to semilog-polar coordinates space.
4770     *
4771     * @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
4772     *
4773     *
4774     * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image d)"):
4775     * \(\begin{array}{l}
4776     *   dst( \rho , \phi ) = src(x,y) \\
4777     *   dst.size() \leftarrow src.size()
4778     * \end{array}\)
4779     *
4780     * where
4781     * \(\begin{array}{l}
4782     *   I = (dx,dy) = (x - center.x,y - center.y) \\
4783     *   \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
4784     *   \phi = Kangle \cdot \texttt{angle} (I) \\
4785     * \end{array}\)
4786     *
4787     * and
4788     * \(\begin{array}{l}
4789     *   M = src.cols / log_e(maxRadius) \\
4790     *   Kangle = src.rows / 2\Pi \\
4791     * \end{array}\)
4792     *
4793     * The function emulates the human "foveal" vision and can be used for fast scale and
4794     * rotation-invariant template matching, for object tracking and so forth.
4795     * @param src Source image
4796     * @param dst Destination image. It will have same size and type as src.
4797     * @param center The transformation center; where the output precision is maximal
4798     * @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
4799     * @param flags A combination of interpolation methods, see #InterpolationFlags
4800     *
4801     * <b>Note:</b>
4802     * <ul>
4803     *   <li>
4804     *    The function can not operate in-place.
4805     *   </li>
4806     *   <li>
4807     *    To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
4808     *   </li>
4809     * </ul>
4810     *
4811     * SEE: cv::linearPolar
4812     */
4813    @Deprecated
4814    public static void logPolar(Mat src, Mat dst, Point center, double M, int flags) {
4815        logPolar_0(src.nativeObj, dst.nativeObj, center.x, center.y, M, flags);
4816    }
4817
4818
4819    //
4820    // C++:  void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags)
4821    //
4822
4823    /**
4824     * Remaps an image to polar coordinates space.
4825     *
4826     * @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
4827     *
4828     *
4829     * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image c)"):
4830     * \(\begin{array}{l}
4831     *   dst( \rho , \phi ) = src(x,y) \\
4832     *   dst.size() \leftarrow src.size()
4833     * \end{array}\)
4834     *
4835     * where
4836     * \(\begin{array}{l}
4837     *   I = (dx,dy) = (x - center.x,y - center.y) \\
4838     *   \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
4839     *   \phi = angle \cdot \texttt{angle} (I)
4840     * \end{array}\)
4841     *
4842     * and
4843     * \(\begin{array}{l}
4844     *   Kx = src.cols / maxRadius \\
4845     *   Ky = src.rows / 2\Pi
4846     * \end{array}\)
4847     *
4848     *
4849     * @param src Source image
4850     * @param dst Destination image. It will have same size and type as src.
4851     * @param center The transformation center;
4852     * @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
4853     * @param flags A combination of interpolation methods, see #InterpolationFlags
4854     *
4855     * <b>Note:</b>
4856     * <ul>
4857     *   <li>
4858     *    The function can not operate in-place.
4859     *   </li>
4860     *   <li>
4861     *    To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
4862     *   </li>
4863     * </ul>
4864     *
4865     * SEE: cv::logPolar
4866     */
4867    @Deprecated
4868    public static void linearPolar(Mat src, Mat dst, Point center, double maxRadius, int flags) {
4869        linearPolar_0(src.nativeObj, dst.nativeObj, center.x, center.y, maxRadius, flags);
4870    }
4871
4872
4873    //
4874    // C++:  void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags)
4875    //
4876
4877    /**
4878     * Remaps an image to polar or semilog-polar coordinates space
4879     *
4880     *  polar_remaps_reference_image
4881     * ![Polar remaps reference](pics/polar_remap_doc.png)
4882     *
4883     * Transform the source image using the following transformation:
4884     * \(
4885     * dst(\rho , \phi ) = src(x,y)
4886     * \)
4887     *
4888     * where
4889     * \(
4890     * \begin{array}{l}
4891     * \vec{I} = (x - center.x, \;y - center.y) \\
4892     * \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
4893     * \rho = \left\{\begin{matrix}
4894     * Klin \cdot \texttt{magnitude} (\vec{I}) &amp; default \\
4895     * Klog \cdot log_e(\texttt{magnitude} (\vec{I})) &amp; if \; semilog \\
4896     * \end{matrix}\right.
4897     * \end{array}
4898     * \)
4899     *
4900     * and
4901     * \(
4902     * \begin{array}{l}
4903     * Kangle = dsize.height / 2\Pi \\
4904     * Klin = dsize.width / maxRadius \\
4905     * Klog = dsize.width / log_e(maxRadius) \\
4906     * \end{array}
4907     * \)
4908     *
4909     *
4910     * \par Linear vs semilog mapping
4911     *
4912     * Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to {@code flags} to specify the polar mapping mode.
4913     *
4914     * Linear is the default mode.
4915     *
4916     * The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
4917     * in contrast to peripheral vision where acuity is minor.
4918     *
4919     * \par Option on {@code dsize}:
4920     *
4921     * <ul>
4922     *   <li>
4923     *  if both values in {@code dsize &lt;=0 } (default),
4924     * the destination image will have (almost) same area of source bounding circle:
4925     * \(\begin{array}{l}
4926     * dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\
4927     * dsize.width = \texttt{cvRound}(maxRadius) \\
4928     * dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
4929     * \end{array}\)
4930     *   </li>
4931     * </ul>
4932     *
4933     *
4934     * <ul>
4935     *   <li>
4936     *  if only {@code dsize.height &lt;= 0},
4937     * the destination image area will be proportional to the bounding circle area but scaled by {@code Kx * Kx}:
4938     * \(\begin{array}{l}
4939     * dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
4940     * \end{array}
4941     * \)
4942     *   </li>
4943     * </ul>
4944     *
4945     * <ul>
4946     *   <li>
4947     *  if both values in {@code dsize &gt; 0 },
4948     * the destination image will have the given size therefore the area of the bounding circle will be scaled to {@code dsize}.
4949     *   </li>
4950     * </ul>
4951     *
4952     *
4953     * \par Reverse mapping
4954     *
4955     * You can get reverse mapping adding #WARP_INVERSE_MAP to {@code flags}
4956     * \snippet polar_transforms.cpp InverseMap
4957     *
4958     * In addiction, to calculate the original coordinate from a polar mapped coordinate \((rho, phi)-&gt;(x, y)\):
4959     * \snippet polar_transforms.cpp InverseCoordinate
4960     *
4961     * @param src Source image.
4962     * @param dst Destination image. It will have same type as src.
4963     * @param dsize The destination image size (see description for valid options).
4964     * @param center The transformation center.
4965     * @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
4966     * @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
4967     * <ul>
4968     *   <li>
4969     *              Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
4970     *   </li>
4971     *   <li>
4972     *              Add #WARP_POLAR_LOG to select semilog polar mapping
4973     *   </li>
4974     *   <li>
4975     *              Add #WARP_INVERSE_MAP for reverse mapping.
4976     *   </li>
4977     * </ul>
4978     * <b>Note:</b>
4979     * <ul>
4980     *   <li>
4981     *   The function can not operate in-place.
4982     *   </li>
4983     *   <li>
4984     *   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
4985     *   </li>
4986     *   <li>
4987     *   This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
4988     *   </li>
4989     * </ul>
4990     *
4991     * SEE: cv::remap
4992     */
4993    public static void warpPolar(Mat src, Mat dst, Size dsize, Point center, double maxRadius, int flags) {
4994        warpPolar_0(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, center.x, center.y, maxRadius, flags);
4995    }
4996
4997
4998    //
4999    // C++:  void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1)
5000    //
5001
5002    /**
5003     * Calculates the integral of an image.
5004     *
5005     * The function calculates one or more integral images for the source image as follows:
5006     *
5007     * \(\texttt{sum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)\)
5008     *
5009     * \(\texttt{sqsum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)^2\)
5010     *
5011     * \(\texttt{tilted} (X,Y) =  \sum _{y&lt;Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\)
5012     *
5013     * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
5014     * up-right or rotated rectangular region of the image in a constant time, for example:
5015     *
5016     * \(\sum _{x_1 \leq x &lt; x_2,  \, y_1  \leq y &lt; y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\)
5017     *
5018     * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
5019     * example. In case of multi-channel images, sums for each channel are accumulated independently.
5020     *
5021     * As a practical example, the next figure shows the calculation of the integral of a straight
5022     * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
5023     * original image are shown, as well as the relative pixels in the integral images sum and tilted .
5024     *
5025     * ![integral calculation example](pics/integral.png)
5026     *
5027     * @param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f).
5028     * @param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f).
5029     * @param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision
5030     * floating-point (64f) array.
5031     * @param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with
5032     * the same data type as sum.
5033     * @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
5034     * CV_64F.
5035     * @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
5036     */
5037    public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth, int sqdepth) {
5038        integral3_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth, sqdepth);
5039    }
5040
5041    /**
5042     * Calculates the integral of an image.
5043     *
5044     * The function calculates one or more integral images for the source image as follows:
5045     *
5046     * \(\texttt{sum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)\)
5047     *
5048     * \(\texttt{sqsum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)^2\)
5049     *
5050     * \(\texttt{tilted} (X,Y) =  \sum _{y&lt;Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\)
5051     *
5052     * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
5053     * up-right or rotated rectangular region of the image in a constant time, for example:
5054     *
5055     * \(\sum _{x_1 \leq x &lt; x_2,  \, y_1  \leq y &lt; y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\)
5056     *
5057     * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
5058     * example. In case of multi-channel images, sums for each channel are accumulated independently.
5059     *
5060     * As a practical example, the next figure shows the calculation of the integral of a straight
5061     * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
5062     * original image are shown, as well as the relative pixels in the integral images sum and tilted .
5063     *
5064     * ![integral calculation example](pics/integral.png)
5065     *
5066     * @param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f).
5067     * @param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f).
5068     * @param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision
5069     * floating-point (64f) array.
5070     * @param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with
5071     * the same data type as sum.
5072     * @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
5073     * CV_64F.
5074     */
5075    public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth) {
5076        integral3_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth);
5077    }
5078
5079    /**
5080     * Calculates the integral of an image.
5081     *
5082     * The function calculates one or more integral images for the source image as follows:
5083     *
5084     * \(\texttt{sum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)\)
5085     *
5086     * \(\texttt{sqsum} (X,Y) =  \sum _{x&lt;X,y&lt;Y}  \texttt{image} (x,y)^2\)
5087     *
5088     * \(\texttt{tilted} (X,Y) =  \sum _{y&lt;Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\)
5089     *
5090     * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
5091     * up-right or rotated rectangular region of the image in a constant time, for example:
5092     *
5093     * \(\sum _{x_1 \leq x &lt; x_2,  \, y_1  \leq y &lt; y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\)
5094     *
5095     * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
5096     * example. In case of multi-channel images, sums for each channel are accumulated independently.
5097     *
5098     * As a practical example, the next figure shows the calculation of the integral of a straight
5099     * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
5100     * original image are shown, as well as the relative pixels in the integral images sum and tilted .
5101     *
5102     * ![integral calculation example](pics/integral.png)
5103     *
5104     * @param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f).
5105     * @param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f).
5106     * @param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision
5107     * floating-point (64f) array.
5108     * @param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with
5109     * the same data type as sum.
5110     * CV_64F.
5111     */
5112    public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted) {
5113        integral3_2(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj);
5114    }
5115
5116
5117    //
5118    // C++:  void cv::integral(Mat src, Mat& sum, int sdepth = -1)
5119    //
5120
5121    public static void integral(Mat src, Mat sum, int sdepth) {
5122        integral_0(src.nativeObj, sum.nativeObj, sdepth);
5123    }
5124
5125    public static void integral(Mat src, Mat sum) {
5126        integral_1(src.nativeObj, sum.nativeObj);
5127    }
5128
5129
5130    //
5131    // C++:  void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1)
5132    //
5133
5134    public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth, int sqdepth) {
5135        integral2_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth, sqdepth);
5136    }
5137
5138    public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth) {
5139        integral2_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth);
5140    }
5141
5142    public static void integral2(Mat src, Mat sum, Mat sqsum) {
5143        integral2_2(src.nativeObj, sum.nativeObj, sqsum.nativeObj);
5144    }
5145
5146
5147    //
5148    // C++:  void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat())
5149    //
5150
5151    /**
5152     * Adds an image to the accumulator image.
5153     *
5154     * The function adds src or some of its elements to dst :
5155     *
5156     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5157     *
5158     * The function supports multi-channel images. Each channel is processed independently.
5159     *
5160     * The function cv::accumulate can be used, for example, to collect statistics of a scene background
5161     * viewed by a still camera and for the further foreground-background segmentation.
5162     *
5163     * @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
5164     * @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
5165     * @param mask Optional operation mask.
5166     *
5167     * SEE:  accumulateSquare, accumulateProduct, accumulateWeighted
5168     */
5169    public static void accumulate(Mat src, Mat dst, Mat mask) {
5170        accumulate_0(src.nativeObj, dst.nativeObj, mask.nativeObj);
5171    }
5172
5173    /**
5174     * Adds an image to the accumulator image.
5175     *
5176     * The function adds src or some of its elements to dst :
5177     *
5178     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5179     *
5180     * The function supports multi-channel images. Each channel is processed independently.
5181     *
5182     * The function cv::accumulate can be used, for example, to collect statistics of a scene background
5183     * viewed by a still camera and for the further foreground-background segmentation.
5184     *
5185     * @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
5186     * @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
5187     *
5188     * SEE:  accumulateSquare, accumulateProduct, accumulateWeighted
5189     */
5190    public static void accumulate(Mat src, Mat dst) {
5191        accumulate_1(src.nativeObj, dst.nativeObj);
5192    }
5193
5194
5195    //
5196    // C++:  void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat())
5197    //
5198
5199    /**
5200     * Adds the square of a source image to the accumulator image.
5201     *
5202     * The function adds the input image src or its selected region, raised to a power of 2, to the
5203     * accumulator dst :
5204     *
5205     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5206     *
5207     * The function supports multi-channel images. Each channel is processed independently.
5208     *
5209     * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
5210     * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
5211     * floating-point.
5212     * @param mask Optional operation mask.
5213     *
5214     * SEE:  accumulateSquare, accumulateProduct, accumulateWeighted
5215     */
5216    public static void accumulateSquare(Mat src, Mat dst, Mat mask) {
5217        accumulateSquare_0(src.nativeObj, dst.nativeObj, mask.nativeObj);
5218    }
5219
5220    /**
5221     * Adds the square of a source image to the accumulator image.
5222     *
5223     * The function adds the input image src or its selected region, raised to a power of 2, to the
5224     * accumulator dst :
5225     *
5226     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5227     *
5228     * The function supports multi-channel images. Each channel is processed independently.
5229     *
5230     * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
5231     * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
5232     * floating-point.
5233     *
5234     * SEE:  accumulateSquare, accumulateProduct, accumulateWeighted
5235     */
5236    public static void accumulateSquare(Mat src, Mat dst) {
5237        accumulateSquare_1(src.nativeObj, dst.nativeObj);
5238    }
5239
5240
5241    //
5242    // C++:  void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
5243    //
5244
5245    /**
5246     * Adds the per-element product of two input images to the accumulator image.
5247     *
5248     * The function adds the product of two images or their selected regions to the accumulator dst :
5249     *
5250     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5251     *
5252     * The function supports multi-channel images. Each channel is processed independently.
5253     *
5254     * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
5255     * @param src2 Second input image of the same type and the same size as src1 .
5256     * @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
5257     * floating-point.
5258     * @param mask Optional operation mask.
5259     *
5260     * SEE:  accumulate, accumulateSquare, accumulateWeighted
5261     */
5262    public static void accumulateProduct(Mat src1, Mat src2, Mat dst, Mat mask) {
5263        accumulateProduct_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);
5264    }
5265
5266    /**
5267     * Adds the per-element product of two input images to the accumulator image.
5268     *
5269     * The function adds the product of two images or their selected regions to the accumulator dst :
5270     *
5271     * \(\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5272     *
5273     * The function supports multi-channel images. Each channel is processed independently.
5274     *
5275     * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
5276     * @param src2 Second input image of the same type and the same size as src1 .
5277     * @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
5278     * floating-point.
5279     *
5280     * SEE:  accumulate, accumulateSquare, accumulateWeighted
5281     */
5282    public static void accumulateProduct(Mat src1, Mat src2, Mat dst) {
5283        accumulateProduct_1(src1.nativeObj, src2.nativeObj, dst.nativeObj);
5284    }
5285
5286
5287    //
5288    // C++:  void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat())
5289    //
5290
5291    /**
5292     * Updates a running average.
5293     *
5294     * The function calculates the weighted sum of the input image src and the accumulator dst so that dst
5295     * becomes a running average of a frame sequence:
5296     *
5297     * \(\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5298     *
5299     * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
5300     * The function supports multi-channel images. Each channel is processed independently.
5301     *
5302     * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
5303     * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
5304     * floating-point.
5305     * @param alpha Weight of the input image.
5306     * @param mask Optional operation mask.
5307     *
5308     * SEE:  accumulate, accumulateSquare, accumulateProduct
5309     */
5310    public static void accumulateWeighted(Mat src, Mat dst, double alpha, Mat mask) {
5311        accumulateWeighted_0(src.nativeObj, dst.nativeObj, alpha, mask.nativeObj);
5312    }
5313
5314    /**
5315     * Updates a running average.
5316     *
5317     * The function calculates the weighted sum of the input image src and the accumulator dst so that dst
5318     * becomes a running average of a frame sequence:
5319     *
5320     * \(\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\)
5321     *
5322     * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
5323     * The function supports multi-channel images. Each channel is processed independently.
5324     *
5325     * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
5326     * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
5327     * floating-point.
5328     * @param alpha Weight of the input image.
5329     *
5330     * SEE:  accumulate, accumulateSquare, accumulateProduct
5331     */
5332    public static void accumulateWeighted(Mat src, Mat dst, double alpha) {
5333        accumulateWeighted_1(src.nativeObj, dst.nativeObj, alpha);
5334    }
5335
5336
5337    //
5338    // C++:  Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0)
5339    //
5340
5341    /**
5342     * The function is used to detect translational shifts that occur between two images.
5343     *
5344     * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
5345     * the frequency domain. It can be used for fast image registration as well as motion estimation. For
5346     * more information please see &lt;http://en.wikipedia.org/wiki/Phase_correlation&gt;
5347     *
5348     * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
5349     * with getOptimalDFTSize.
5350     *
5351     * The function performs the following equations:
5352     * <ul>
5353     *   <li>
5354     *  First it applies a Hanning window (see &lt;http://en.wikipedia.org/wiki/Hann_function&gt;) to each
5355     * image to remove possible edge effects. This window is cached until the array size changes to speed
5356     * up processing time.
5357     *   </li>
5358     *   <li>
5359     *  Next it computes the forward DFTs of each source array:
5360     * \(\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\)
5361     * where \(\mathcal{F}\) is the forward DFT.
5362     *   </li>
5363     *   <li>
5364     *  It then computes the cross-power spectrum of each frequency domain array:
5365     * \(R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\)
5366     *   </li>
5367     *   <li>
5368     *  Next the cross-correlation is converted back into the time domain via the inverse DFT:
5369     * \(r = \mathcal{F}^{-1}\{R\}\)
5370     *   </li>
5371     *   <li>
5372     *  Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
5373     * achieve sub-pixel accuracy.
5374     * \((\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\)
5375     *   </li>
5376     *   <li>
5377     *  If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
5378     * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
5379     * peak) and will be smaller when there are multiple peaks.
5380     *   </li>
5381     * </ul>
5382     *
5383     * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
5384     * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
5385     * @param window Floating point array with windowing coefficients to reduce edge effects (optional).
5386     * @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
5387     * @return detected phase shift (sub-pixel) between the two arrays.
5388     *
5389     * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
5390     */
5391    public static Point phaseCorrelate(Mat src1, Mat src2, Mat window, double[] response) {
5392        double[] response_out = new double[1];
5393        Point retVal = new Point(phaseCorrelate_0(src1.nativeObj, src2.nativeObj, window.nativeObj, response_out));
5394        if(response!=null) response[0] = (double)response_out[0];
5395        return retVal;
5396    }
5397
5398    /**
5399     * The function is used to detect translational shifts that occur between two images.
5400     *
5401     * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
5402     * the frequency domain. It can be used for fast image registration as well as motion estimation. For
5403     * more information please see &lt;http://en.wikipedia.org/wiki/Phase_correlation&gt;
5404     *
5405     * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
5406     * with getOptimalDFTSize.
5407     *
5408     * The function performs the following equations:
5409     * <ul>
5410     *   <li>
5411     *  First it applies a Hanning window (see &lt;http://en.wikipedia.org/wiki/Hann_function&gt;) to each
5412     * image to remove possible edge effects. This window is cached until the array size changes to speed
5413     * up processing time.
5414     *   </li>
5415     *   <li>
5416     *  Next it computes the forward DFTs of each source array:
5417     * \(\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\)
5418     * where \(\mathcal{F}\) is the forward DFT.
5419     *   </li>
5420     *   <li>
5421     *  It then computes the cross-power spectrum of each frequency domain array:
5422     * \(R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\)
5423     *   </li>
5424     *   <li>
5425     *  Next the cross-correlation is converted back into the time domain via the inverse DFT:
5426     * \(r = \mathcal{F}^{-1}\{R\}\)
5427     *   </li>
5428     *   <li>
5429     *  Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
5430     * achieve sub-pixel accuracy.
5431     * \((\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\)
5432     *   </li>
5433     *   <li>
5434     *  If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
5435     * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
5436     * peak) and will be smaller when there are multiple peaks.
5437     *   </li>
5438     * </ul>
5439     *
5440     * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
5441     * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
5442     * @param window Floating point array with windowing coefficients to reduce edge effects (optional).
5443     * @return detected phase shift (sub-pixel) between the two arrays.
5444     *
5445     * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
5446     */
5447    public static Point phaseCorrelate(Mat src1, Mat src2, Mat window) {
5448        return new Point(phaseCorrelate_1(src1.nativeObj, src2.nativeObj, window.nativeObj));
5449    }
5450
5451    /**
5452     * The function is used to detect translational shifts that occur between two images.
5453     *
5454     * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
5455     * the frequency domain. It can be used for fast image registration as well as motion estimation. For
5456     * more information please see &lt;http://en.wikipedia.org/wiki/Phase_correlation&gt;
5457     *
5458     * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
5459     * with getOptimalDFTSize.
5460     *
5461     * The function performs the following equations:
5462     * <ul>
5463     *   <li>
5464     *  First it applies a Hanning window (see &lt;http://en.wikipedia.org/wiki/Hann_function&gt;) to each
5465     * image to remove possible edge effects. This window is cached until the array size changes to speed
5466     * up processing time.
5467     *   </li>
5468     *   <li>
5469     *  Next it computes the forward DFTs of each source array:
5470     * \(\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\)
5471     * where \(\mathcal{F}\) is the forward DFT.
5472     *   </li>
5473     *   <li>
5474     *  It then computes the cross-power spectrum of each frequency domain array:
5475     * \(R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\)
5476     *   </li>
5477     *   <li>
5478     *  Next the cross-correlation is converted back into the time domain via the inverse DFT:
5479     * \(r = \mathcal{F}^{-1}\{R\}\)
5480     *   </li>
5481     *   <li>
5482     *  Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
5483     * achieve sub-pixel accuracy.
5484     * \((\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\)
5485     *   </li>
5486     *   <li>
5487     *  If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
5488     * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
5489     * peak) and will be smaller when there are multiple peaks.
5490     *   </li>
5491     * </ul>
5492     *
5493     * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
5494     * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
5495     * @return detected phase shift (sub-pixel) between the two arrays.
5496     *
5497     * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
5498     */
5499    public static Point phaseCorrelate(Mat src1, Mat src2) {
5500        return new Point(phaseCorrelate_2(src1.nativeObj, src2.nativeObj));
5501    }
5502
5503
5504    //
5505    // C++:  void cv::createHanningWindow(Mat& dst, Size winSize, int type)
5506    //
5507
5508    /**
5509     * This function computes a Hanning window coefficients in two dimensions.
5510     *
5511     * See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
5512     * for more information.
5513     *
5514     * An example is shown below:
5515     * <code>
5516     *     // create hanning window of size 100x100 and type CV_32F
5517     *     Mat hann;
5518     *     createHanningWindow(hann, Size(100, 100), CV_32F);
5519     * </code>
5520     * @param dst Destination array to place Hann coefficients in
5521     * @param winSize The window size specifications (both width and height must be &gt; 1)
5522     * @param type Created array type
5523     */
5524    public static void createHanningWindow(Mat dst, Size winSize, int type) {
5525        createHanningWindow_0(dst.nativeObj, winSize.width, winSize.height, type);
5526    }
5527
5528
5529    //
5530    // C++:  void cv::divSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false)
5531    //
5532
5533    /**
5534     * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
5535     *
5536     * The function cv::divSpectrums performs the per-element division of the first array by the second array.
5537     * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
5538     *
5539     * @param a first input array.
5540     * @param b second input array of the same size and type as src1 .
5541     * @param c output array of the same size and type as src1 .
5542     * @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
5543     * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a {@code 0} as value.
5544     * @param conjB optional flag that conjugates the second input array before the multiplication (true)
5545     * or not (false).
5546     */
5547    public static void divSpectrums(Mat a, Mat b, Mat c, int flags, boolean conjB) {
5548        divSpectrums_0(a.nativeObj, b.nativeObj, c.nativeObj, flags, conjB);
5549    }
5550
5551    /**
5552     * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
5553     *
5554     * The function cv::divSpectrums performs the per-element division of the first array by the second array.
5555     * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
5556     *
5557     * @param a first input array.
5558     * @param b second input array of the same size and type as src1 .
5559     * @param c output array of the same size and type as src1 .
5560     * @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
5561     * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a {@code 0} as value.
5562     * or not (false).
5563     */
5564    public static void divSpectrums(Mat a, Mat b, Mat c, int flags) {
5565        divSpectrums_1(a.nativeObj, b.nativeObj, c.nativeObj, flags);
5566    }
5567
5568
5569    //
5570    // C++:  double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type)
5571    //
5572
5573    /**
5574     * Applies a fixed-level threshold to each array element.
5575     *
5576     * The function applies fixed-level thresholding to a multiple-channel array. The function is typically
5577     * used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
5578     * this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
5579     * values. There are several types of thresholding supported by the function. They are determined by
5580     * type parameter.
5581     *
5582     * Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
5583     * above values. In these cases, the function determines the optimal threshold value using the Otsu's
5584     * or Triangle algorithm and uses it instead of the specified thresh.
5585     *
5586     * <b>Note:</b> Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
5587     *
5588     * @param src input array (multiple-channel, 8-bit or 32-bit floating point).
5589     * @param dst output array of the same size  and type and the same number of channels as src.
5590     * @param thresh threshold value.
5591     * @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
5592     * types.
5593     * @param type thresholding type (see #ThresholdTypes).
5594     * @return the computed threshold value if Otsu's or Triangle methods used.
5595     *
5596     * SEE:  adaptiveThreshold, findContours, compare, min, max
5597     */
5598    public static double threshold(Mat src, Mat dst, double thresh, double maxval, int type) {
5599        return threshold_0(src.nativeObj, dst.nativeObj, thresh, maxval, type);
5600    }
5601
5602
5603    //
5604    // C++:  void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C)
5605    //
5606
5607    /**
5608     * Applies an adaptive threshold to an array.
5609     *
5610     * The function transforms a grayscale image to a binary image according to the formulae:
5611     * <ul>
5612     *   <li>
5613     *    <b>THRESH_BINARY</b>
5614     *     \(dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) &gt; T(x,y)\)}{0}{otherwise}\)
5615     *   </li>
5616     *   <li>
5617     *    <b>THRESH_BINARY_INV</b>
5618     *     \(dst(x,y) =  \fork{0}{if \(src(x,y) &gt; T(x,y)\)}{\texttt{maxValue}}{otherwise}\)
5619     * where \(T(x,y)\) is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
5620     *   </li>
5621     * </ul>
5622     *
5623     * The function can process the image in-place.
5624     *
5625     * @param src Source 8-bit single-channel image.
5626     * @param dst Destination image of the same size and the same type as src.
5627     * @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
5628     * @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
5629     * The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
5630     * @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
5631     * see #ThresholdTypes.
5632     * @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
5633     * pixel: 3, 5, 7, and so on.
5634     * @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
5635     * is positive but may be zero or negative as well.
5636     *
5637     * SEE:  threshold, blur, GaussianBlur
5638     */
5639    public static void adaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) {
5640        adaptiveThreshold_0(src.nativeObj, dst.nativeObj, maxValue, adaptiveMethod, thresholdType, blockSize, C);
5641    }
5642
5643
5644    //
5645    // C++:  void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT)
5646    //
5647
5648    /**
5649     * Blurs an image and downsamples it.
5650     *
5651     * By default, size of the output image is computed as {@code Size((src.cols+1)/2, (src.rows+1)/2)}, but in
5652     * any case, the following conditions should be satisfied:
5653     *
5654     * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\)
5655     *
5656     * The function performs the downsampling step of the Gaussian pyramid construction. First, it
5657     * convolves the source image with the kernel:
5658     *
5659     * \(\frac{1}{256} \begin{bmatrix} 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 6 &amp; 24 &amp; 36 &amp; 24 &amp; 6  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1 \end{bmatrix}\)
5660     *
5661     * Then, it downsamples the image by rejecting even rows and columns.
5662     *
5663     * @param src input image.
5664     * @param dst output image; it has the specified size and the same type as src.
5665     * @param dstsize size of the output image.
5666     * @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
5667     */
5668    public static void pyrDown(Mat src, Mat dst, Size dstsize, int borderType) {
5669        pyrDown_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType);
5670    }
5671
5672    /**
5673     * Blurs an image and downsamples it.
5674     *
5675     * By default, size of the output image is computed as {@code Size((src.cols+1)/2, (src.rows+1)/2)}, but in
5676     * any case, the following conditions should be satisfied:
5677     *
5678     * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\)
5679     *
5680     * The function performs the downsampling step of the Gaussian pyramid construction. First, it
5681     * convolves the source image with the kernel:
5682     *
5683     * \(\frac{1}{256} \begin{bmatrix} 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 6 &amp; 24 &amp; 36 &amp; 24 &amp; 6  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1 \end{bmatrix}\)
5684     *
5685     * Then, it downsamples the image by rejecting even rows and columns.
5686     *
5687     * @param src input image.
5688     * @param dst output image; it has the specified size and the same type as src.
5689     * @param dstsize size of the output image.
5690     */
5691    public static void pyrDown(Mat src, Mat dst, Size dstsize) {
5692        pyrDown_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height);
5693    }
5694
5695    /**
5696     * Blurs an image and downsamples it.
5697     *
5698     * By default, size of the output image is computed as {@code Size((src.cols+1)/2, (src.rows+1)/2)}, but in
5699     * any case, the following conditions should be satisfied:
5700     *
5701     * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\)
5702     *
5703     * The function performs the downsampling step of the Gaussian pyramid construction. First, it
5704     * convolves the source image with the kernel:
5705     *
5706     * \(\frac{1}{256} \begin{bmatrix} 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 6 &amp; 24 &amp; 36 &amp; 24 &amp; 6  \\ 4 &amp; 16 &amp; 24 &amp; 16 &amp; 4  \\ 1 &amp; 4 &amp; 6 &amp; 4 &amp; 1 \end{bmatrix}\)
5707     *
5708     * Then, it downsamples the image by rejecting even rows and columns.
5709     *
5710     * @param src input image.
5711     * @param dst output image; it has the specified size and the same type as src.
5712     */
5713    public static void pyrDown(Mat src, Mat dst) {
5714        pyrDown_2(src.nativeObj, dst.nativeObj);
5715    }
5716
5717
5718    //
5719    // C++:  void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT)
5720    //
5721
5722    /**
5723     * Upsamples an image and then blurs it.
5724     *
5725     * By default, size of the output image is computed as {@code Size(src.cols\*2, (src.rows\*2)}, but in any
5726     * case, the following conditions should be satisfied:
5727     *
5728     * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\)
5729     *
5730     * The function performs the upsampling step of the Gaussian pyramid construction, though it can
5731     * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
5732     * injecting even zero rows and columns and then convolves the result with the same kernel as in
5733     * pyrDown multiplied by 4.
5734     *
5735     * @param src input image.
5736     * @param dst output image. It has the specified size and the same type as src .
5737     * @param dstsize size of the output image.
5738     * @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
5739     */
5740    public static void pyrUp(Mat src, Mat dst, Size dstsize, int borderType) {
5741        pyrUp_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType);
5742    }
5743
5744    /**
5745     * Upsamples an image and then blurs it.
5746     *
5747     * By default, size of the output image is computed as {@code Size(src.cols\*2, (src.rows\*2)}, but in any
5748     * case, the following conditions should be satisfied:
5749     *
5750     * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\)
5751     *
5752     * The function performs the upsampling step of the Gaussian pyramid construction, though it can
5753     * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
5754     * injecting even zero rows and columns and then convolves the result with the same kernel as in
5755     * pyrDown multiplied by 4.
5756     *
5757     * @param src input image.
5758     * @param dst output image. It has the specified size and the same type as src .
5759     * @param dstsize size of the output image.
5760     */
5761    public static void pyrUp(Mat src, Mat dst, Size dstsize) {
5762        pyrUp_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height);
5763    }
5764
5765    /**
5766     * Upsamples an image and then blurs it.
5767     *
5768     * By default, size of the output image is computed as {@code Size(src.cols\*2, (src.rows\*2)}, but in any
5769     * case, the following conditions should be satisfied:
5770     *
5771     * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\)
5772     *
5773     * The function performs the upsampling step of the Gaussian pyramid construction, though it can
5774     * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
5775     * injecting even zero rows and columns and then convolves the result with the same kernel as in
5776     * pyrDown multiplied by 4.
5777     *
5778     * @param src input image.
5779     * @param dst output image. It has the specified size and the same type as src .
5780     */
5781    public static void pyrUp(Mat src, Mat dst) {
5782        pyrUp_2(src.nativeObj, dst.nativeObj);
5783    }
5784
5785
5786    //
5787    // C++:  void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false)
5788    //
5789
5790    public static void calcHist(List<Mat> images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges, boolean accumulate) {
5791        Mat images_mat = Converters.vector_Mat_to_Mat(images);
5792        Mat channels_mat = channels;
5793        Mat histSize_mat = histSize;
5794        Mat ranges_mat = ranges;
5795        calcHist_0(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj, accumulate);
5796    }
5797
5798    public static void calcHist(List<Mat> images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges) {
5799        Mat images_mat = Converters.vector_Mat_to_Mat(images);
5800        Mat channels_mat = channels;
5801        Mat histSize_mat = histSize;
5802        Mat ranges_mat = ranges;
5803        calcHist_1(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj);
5804    }
5805
5806
5807    //
5808    // C++:  void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale)
5809    //
5810
5811    public static void calcBackProject(List<Mat> images, MatOfInt channels, Mat hist, Mat dst, MatOfFloat ranges, double scale) {
5812        Mat images_mat = Converters.vector_Mat_to_Mat(images);
5813        Mat channels_mat = channels;
5814        Mat ranges_mat = ranges;
5815        calcBackProject_0(images_mat.nativeObj, channels_mat.nativeObj, hist.nativeObj, dst.nativeObj, ranges_mat.nativeObj, scale);
5816    }
5817
5818
5819    //
5820    // C++:  double cv::compareHist(Mat H1, Mat H2, int method)
5821    //
5822
5823    /**
5824     * Compares two histograms.
5825     *
5826     * The function cv::compareHist compares two dense or two sparse histograms using the specified method.
5827     *
5828     * The function returns \(d(H_1, H_2)\) .
5829     *
5830     * While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
5831     * for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
5832     * problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
5833     * or more general sparse configurations of weighted points, consider using the #EMD function.
5834     *
5835     * @param H1 First compared histogram.
5836     * @param H2 Second compared histogram of the same size as H1 .
5837     * @param method Comparison method, see #HistCompMethods
5838     * @return automatically generated
5839     */
5840    public static double compareHist(Mat H1, Mat H2, int method) {
5841        return compareHist_0(H1.nativeObj, H2.nativeObj, method);
5842    }
5843
5844
5845    //
5846    // C++:  void cv::equalizeHist(Mat src, Mat& dst)
5847    //
5848
5849    /**
5850     * Equalizes the histogram of a grayscale image.
5851     *
5852     * The function equalizes the histogram of the input image using the following algorithm:
5853     *
5854     * <ul>
5855     *   <li>
5856     *  Calculate the histogram \(H\) for src .
5857     *   </li>
5858     *   <li>
5859     *  Normalize the histogram so that the sum of histogram bins is 255.
5860     *   </li>
5861     *   <li>
5862     *  Compute the integral of the histogram:
5863     * \(H'_i =  \sum _{0  \le j &lt; i} H(j)\)
5864     *   </li>
5865     *   <li>
5866     *  Transform the image using \(H'\) as a look-up table: \(\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\)
5867     *   </li>
5868     * </ul>
5869     *
5870     * The algorithm normalizes the brightness and increases the contrast of the image.
5871     *
5872     * @param src Source 8-bit single channel image.
5873     * @param dst Destination image of the same size and type as src .
5874     */
5875    public static void equalizeHist(Mat src, Mat dst) {
5876        equalizeHist_0(src.nativeObj, dst.nativeObj);
5877    }
5878
5879
5880    //
5881    // C++:  Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8))
5882    //
5883
5884    /**
5885     * Creates a smart pointer to a cv::CLAHE class and initializes it.
5886     *
5887     * @param clipLimit Threshold for contrast limiting.
5888     * @param tileGridSize Size of grid for histogram equalization. Input image will be divided into
5889     * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
5890     * @return automatically generated
5891     */
5892    public static CLAHE createCLAHE(double clipLimit, Size tileGridSize) {
5893        return CLAHE.__fromPtr__(createCLAHE_0(clipLimit, tileGridSize.width, tileGridSize.height));
5894    }
5895
5896    /**
5897     * Creates a smart pointer to a cv::CLAHE class and initializes it.
5898     *
5899     * @param clipLimit Threshold for contrast limiting.
5900     * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
5901     * @return automatically generated
5902     */
5903    public static CLAHE createCLAHE(double clipLimit) {
5904        return CLAHE.__fromPtr__(createCLAHE_1(clipLimit));
5905    }
5906
5907    /**
5908     * Creates a smart pointer to a cv::CLAHE class and initializes it.
5909     *
5910     * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
5911     * @return automatically generated
5912     */
5913    public static CLAHE createCLAHE() {
5914        return CLAHE.__fromPtr__(createCLAHE_2());
5915    }
5916
5917
5918    //
5919    // C++:  float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr<float>(), Mat& flow = Mat())
5920    //
5921
5922    /**
5923     * Computes the "minimal work" distance between two weighted point configurations.
5924     *
5925     * The function computes the earth mover distance and/or a lower boundary of the distance between the
5926     * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
5927     * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
5928     * problem that is solved using some modification of a simplex algorithm, thus the complexity is
5929     * exponential in the worst case, though, on average it is much faster. In the case of a real metric
5930     * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
5931     * to determine roughly whether the two signatures are far enough so that they cannot relate to the
5932     * same object.
5933     *
5934     * @param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix.
5935     * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
5936     * a single column (weights only) if the user-defined cost matrix is used. The weights must be
5937     * non-negative and have at least one non-zero value.
5938     * @param signature2 Second signature of the same format as signature1 , though the number of rows
5939     * may be different. The total weights may be different. In this case an extra "dummy" point is added
5940     * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
5941     * value.
5942     * @param distType Used metric. See #DistanceTypes.
5943     * @param cost User-defined \(\texttt{size1}\times \texttt{size2}\) cost matrix. Also, if a cost matrix
5944     * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
5945     * signatures that is a distance between mass centers. The lower boundary may not be calculated if
5946     * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
5947     * if the signatures consist of weights only (the signature matrices have a single column). You
5948     * <b>must</b> initialize \*lowerBound . If the calculated distance between mass centers is greater or
5949     * equal to \*lowerBound (it means that the signatures are far enough), the function does not
5950     * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
5951     * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
5952     * should be set to 0.
5953     * @param flow Resultant \(\texttt{size1} \times \texttt{size2}\) flow matrix: \(\texttt{flow}_{i,j}\) is
5954     * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 .
5955     * @return automatically generated
5956     */
5957    public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost, Mat flow) {
5958        return EMD_0(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj, flow.nativeObj);
5959    }
5960
5961    /**
5962     * Computes the "minimal work" distance between two weighted point configurations.
5963     *
5964     * The function computes the earth mover distance and/or a lower boundary of the distance between the
5965     * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
5966     * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
5967     * problem that is solved using some modification of a simplex algorithm, thus the complexity is
5968     * exponential in the worst case, though, on average it is much faster. In the case of a real metric
5969     * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
5970     * to determine roughly whether the two signatures are far enough so that they cannot relate to the
5971     * same object.
5972     *
5973     * @param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix.
5974     * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
5975     * a single column (weights only) if the user-defined cost matrix is used. The weights must be
5976     * non-negative and have at least one non-zero value.
5977     * @param signature2 Second signature of the same format as signature1 , though the number of rows
5978     * may be different. The total weights may be different. In this case an extra "dummy" point is added
5979     * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
5980     * value.
5981     * @param distType Used metric. See #DistanceTypes.
5982     * @param cost User-defined \(\texttt{size1}\times \texttt{size2}\) cost matrix. Also, if a cost matrix
5983     * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
5984     * signatures that is a distance between mass centers. The lower boundary may not be calculated if
5985     * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
5986     * if the signatures consist of weights only (the signature matrices have a single column). You
5987     * <b>must</b> initialize \*lowerBound . If the calculated distance between mass centers is greater or
5988     * equal to \*lowerBound (it means that the signatures are far enough), the function does not
5989     * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
5990     * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
5991     * should be set to 0.
5992     * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 .
5993     * @return automatically generated
5994     */
5995    public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost) {
5996        return EMD_1(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj);
5997    }
5998
5999    /**
6000     * Computes the "minimal work" distance between two weighted point configurations.
6001     *
6002     * The function computes the earth mover distance and/or a lower boundary of the distance between the
6003     * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
6004     * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
6005     * problem that is solved using some modification of a simplex algorithm, thus the complexity is
6006     * exponential in the worst case, though, on average it is much faster. In the case of a real metric
6007     * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
6008     * to determine roughly whether the two signatures are far enough so that they cannot relate to the
6009     * same object.
6010     *
6011     * @param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix.
6012     * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
6013     * a single column (weights only) if the user-defined cost matrix is used. The weights must be
6014     * non-negative and have at least one non-zero value.
6015     * @param signature2 Second signature of the same format as signature1 , though the number of rows
6016     * may be different. The total weights may be different. In this case an extra "dummy" point is added
6017     * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
6018     * value.
6019     * @param distType Used metric. See #DistanceTypes.
6020     * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
6021     * signatures that is a distance between mass centers. The lower boundary may not be calculated if
6022     * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
6023     * if the signatures consist of weights only (the signature matrices have a single column). You
6024     * <b>must</b> initialize \*lowerBound . If the calculated distance between mass centers is greater or
6025     * equal to \*lowerBound (it means that the signatures are far enough), the function does not
6026     * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
6027     * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
6028     * should be set to 0.
6029     * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 .
6030     * @return automatically generated
6031     */
6032    public static float EMD(Mat signature1, Mat signature2, int distType) {
6033        return EMD_3(signature1.nativeObj, signature2.nativeObj, distType);
6034    }
6035
6036
6037    //
6038    // C++:  void cv::watershed(Mat image, Mat& markers)
6039    //
6040
6041    /**
6042     * Performs a marker-based image segmentation using the watershed algorithm.
6043     *
6044     * The function implements one of the variants of watershed, non-parametric marker-based segmentation
6045     * algorithm, described in CITE: Meyer92 .
6046     *
6047     * Before passing the image to the function, you have to roughly outline the desired regions in the
6048     * image markers with positive (&gt;0) indices. So, every region is represented as one or more connected
6049     * components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
6050     * mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
6051     * the future image regions. All the other pixels in markers , whose relation to the outlined regions
6052     * is not known and should be defined by the algorithm, should be set to 0's. In the function output,
6053     * each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
6054     * regions.
6055     *
6056     * <b>Note:</b> Any two neighbor connected components are not necessarily separated by a watershed boundary
6057     * (-1's pixels); for example, they can touch each other in the initial marker image passed to the
6058     * function.
6059     *
6060     * @param image Input 8-bit 3-channel image.
6061     * @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
6062     * size as image .
6063     *
6064     * SEE: findContours
6065     */
6066    public static void watershed(Mat image, Mat markers) {
6067        watershed_0(image.nativeObj, markers.nativeObj);
6068    }
6069
6070
6071    //
6072    // C++:  void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1))
6073    //
6074
6075    /**
6076     * Performs initial step of meanshift segmentation of an image.
6077     *
6078     * The function implements the filtering stage of meanshift segmentation, that is, the output of the
6079     * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
6080     * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
6081     * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
6082     * considered:
6083     *
6084     * \((x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\)
6085     *
6086     * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
6087     * (though, the algorithm does not depend on the color space used, so any 3-component color space can
6088     * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
6089     * (R',G',B') are found and they act as the neighborhood center on the next iteration:
6090     *
6091     * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\)
6092     *
6093     * After the iterations over, the color components of the initial pixel (that is, the pixel from where
6094     * the iterations started) are set to the final value (average color at the last iteration):
6095     *
6096     * \(I(X,Y) &lt;- (R*,G*,B*)\)
6097     *
6098     * When maxLevel &gt; 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
6099     * run on the smallest layer first. After that, the results are propagated to the larger layer and the
6100     * iterations are run again only on those pixels where the layer colors differ by more than sr from the
6101     * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
6102     * results will be actually different from the ones obtained by running the meanshift procedure on the
6103     * whole original image (i.e. when maxLevel==0).
6104     *
6105     * @param src The source 8-bit, 3-channel image.
6106     * @param dst The destination image of the same format and the same size as the source.
6107     * @param sp The spatial window radius.
6108     * @param sr The color window radius.
6109     * @param maxLevel Maximum level of the pyramid for the segmentation.
6110     * @param termcrit Termination criteria: when to stop meanshift iterations.
6111     */
6112    public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel, TermCriteria termcrit) {
6113        pyrMeanShiftFiltering_0(src.nativeObj, dst.nativeObj, sp, sr, maxLevel, termcrit.type, termcrit.maxCount, termcrit.epsilon);
6114    }
6115
6116    /**
6117     * Performs initial step of meanshift segmentation of an image.
6118     *
6119     * The function implements the filtering stage of meanshift segmentation, that is, the output of the
6120     * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
6121     * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
6122     * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
6123     * considered:
6124     *
6125     * \((x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\)
6126     *
6127     * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
6128     * (though, the algorithm does not depend on the color space used, so any 3-component color space can
6129     * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
6130     * (R',G',B') are found and they act as the neighborhood center on the next iteration:
6131     *
6132     * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\)
6133     *
6134     * After the iterations over, the color components of the initial pixel (that is, the pixel from where
6135     * the iterations started) are set to the final value (average color at the last iteration):
6136     *
6137     * \(I(X,Y) &lt;- (R*,G*,B*)\)
6138     *
6139     * When maxLevel &gt; 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
6140     * run on the smallest layer first. After that, the results are propagated to the larger layer and the
6141     * iterations are run again only on those pixels where the layer colors differ by more than sr from the
6142     * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
6143     * results will be actually different from the ones obtained by running the meanshift procedure on the
6144     * whole original image (i.e. when maxLevel==0).
6145     *
6146     * @param src The source 8-bit, 3-channel image.
6147     * @param dst The destination image of the same format and the same size as the source.
6148     * @param sp The spatial window radius.
6149     * @param sr The color window radius.
6150     * @param maxLevel Maximum level of the pyramid for the segmentation.
6151     */
6152    public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel) {
6153        pyrMeanShiftFiltering_1(src.nativeObj, dst.nativeObj, sp, sr, maxLevel);
6154    }
6155
6156    /**
6157     * Performs initial step of meanshift segmentation of an image.
6158     *
6159     * The function implements the filtering stage of meanshift segmentation, that is, the output of the
6160     * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
6161     * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
6162     * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
6163     * considered:
6164     *
6165     * \((x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\)
6166     *
6167     * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
6168     * (though, the algorithm does not depend on the color space used, so any 3-component color space can
6169     * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
6170     * (R',G',B') are found and they act as the neighborhood center on the next iteration:
6171     *
6172     * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\)
6173     *
6174     * After the iterations over, the color components of the initial pixel (that is, the pixel from where
6175     * the iterations started) are set to the final value (average color at the last iteration):
6176     *
6177     * \(I(X,Y) &lt;- (R*,G*,B*)\)
6178     *
6179     * When maxLevel &gt; 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
6180     * run on the smallest layer first. After that, the results are propagated to the larger layer and the
6181     * iterations are run again only on those pixels where the layer colors differ by more than sr from the
6182     * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
6183     * results will be actually different from the ones obtained by running the meanshift procedure on the
6184     * whole original image (i.e. when maxLevel==0).
6185     *
6186     * @param src The source 8-bit, 3-channel image.
6187     * @param dst The destination image of the same format and the same size as the source.
6188     * @param sp The spatial window radius.
6189     * @param sr The color window radius.
6190     */
6191    public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr) {
6192        pyrMeanShiftFiltering_2(src.nativeObj, dst.nativeObj, sp, sr);
6193    }
6194
6195
6196    //
6197    // C++:  void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL)
6198    //
6199
6200    /**
6201     * Runs the GrabCut algorithm.
6202     *
6203     * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
6204     *
6205     * @param img Input 8-bit 3-channel image.
6206     * @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
6207     * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
6208     * @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
6209     * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
6210     * @param bgdModel Temporary array for the background model. Do not modify it while you are
6211     * processing the same image.
6212     * @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
6213     * processing the same image.
6214     * @param iterCount Number of iterations the algorithm should make before returning the result. Note
6215     * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
6216     * mode==GC_EVAL .
6217     * @param mode Operation mode that could be one of the #GrabCutModes
6218     */
6219    public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode) {
6220        grabCut_0(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount, mode);
6221    }
6222
6223    /**
6224     * Runs the GrabCut algorithm.
6225     *
6226     * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
6227     *
6228     * @param img Input 8-bit 3-channel image.
6229     * @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
6230     * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
6231     * @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
6232     * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
6233     * @param bgdModel Temporary array for the background model. Do not modify it while you are
6234     * processing the same image.
6235     * @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
6236     * processing the same image.
6237     * @param iterCount Number of iterations the algorithm should make before returning the result. Note
6238     * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
6239     * mode==GC_EVAL .
6240     */
6241    public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount) {
6242        grabCut_1(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount);
6243    }
6244
6245
6246    //
6247    // C++:  void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP)
6248    //
6249
6250    /**
6251     * Calculates the distance to the closest zero pixel for each pixel of the source image.
6252     *
6253     * The function cv::distanceTransform calculates the approximate or precise distance from every binary
6254     * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
6255     *
6256     * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
6257     * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library.
6258     *
6259     * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function
6260     * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
6261     * diagonal, or knight's move (the latest is available for a \(5\times 5\) mask). The overall
6262     * distance is calculated as a sum of these basic distances. Since the distance function should be
6263     * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
6264     * the diagonal shifts must have the same cost (denoted as {@code b}), and all knight's moves must have the
6265     * same cost (denoted as {@code c}). For the #DIST_C and #DIST_L1 types, the distance is calculated
6266     * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
6267     * relative error (a \(5\times 5\) mask gives more accurate results). For {@code a},{@code b}, and {@code c}, OpenCV
6268     * uses the values suggested in the original paper:
6269     * <ul>
6270     *   <li>
6271     *  DIST_L1: {@code a = 1, b = 2}
6272     *   </li>
6273     *   <li>
6274     *  DIST_L2:
6275     *   <ul>
6276     *     <li>
6277     *      {@code 3 x 3}: {@code a=0.955, b=1.3693}
6278     *     </li>
6279     *     <li>
6280     *      {@code 5 x 5}: {@code a=1, b=1.4, c=2.1969}
6281     *     </li>
6282     *   </ul>
6283     *   <li>
6284     *  DIST_C: {@code a = 1, b = 1}
6285     *   </li>
6286     * </ul>
6287     *
6288     * Typically, for a fast, coarse distance estimation #DIST_L2, a \(3\times 3\) mask is used. For a
6289     * more accurate distance estimation #DIST_L2, a \(5\times 5\) mask or the precise algorithm is used.
6290     * Note that both the precise and the approximate algorithms are linear on the number of pixels.
6291     *
6292     * This variant of the function does not only compute the minimum distance for each pixel \((x, y)\)
6293     * but also identifies the nearest connected component consisting of zero pixels
6294     * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
6295     * component/pixel is stored in {@code labels(x, y)}. When labelType==#DIST_LABEL_CCOMP, the function
6296     * automatically finds connected components of zero pixels in the input image and marks them with
6297     * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
6298     * marks all the zero pixels with distinct labels.
6299     *
6300     * In this mode, the complexity is still linear. That is, the function provides a very fast way to
6301     * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
6302     * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
6303     * yet.
6304     *
6305     * @param src 8-bit, single-channel (binary) source image.
6306     * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
6307     * single-channel image of the same size as src.
6308     * @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
6309     * CV_32SC1 and the same size as src.
6310     * @param distanceType Type of distance, see #DistanceTypes
6311     * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
6312     * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
6313     * the parameter is forced to 3 because a \(3\times 3\) mask gives the same result as \(5\times
6314     * 5\) or any larger aperture.
6315     * @param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
6316     */
6317    public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) {
6318        distanceTransformWithLabels_0(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize, labelType);
6319    }
6320
6321    /**
6322     * Calculates the distance to the closest zero pixel for each pixel of the source image.
6323     *
6324     * The function cv::distanceTransform calculates the approximate or precise distance from every binary
6325     * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
6326     *
6327     * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
6328     * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library.
6329     *
6330     * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function
6331     * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
6332     * diagonal, or knight's move (the latest is available for a \(5\times 5\) mask). The overall
6333     * distance is calculated as a sum of these basic distances. Since the distance function should be
6334     * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
6335     * the diagonal shifts must have the same cost (denoted as {@code b}), and all knight's moves must have the
6336     * same cost (denoted as {@code c}). For the #DIST_C and #DIST_L1 types, the distance is calculated
6337     * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
6338     * relative error (a \(5\times 5\) mask gives more accurate results). For {@code a},{@code b}, and {@code c}, OpenCV
6339     * uses the values suggested in the original paper:
6340     * <ul>
6341     *   <li>
6342     *  DIST_L1: {@code a = 1, b = 2}
6343     *   </li>
6344     *   <li>
6345     *  DIST_L2:
6346     *   <ul>
6347     *     <li>
6348     *      {@code 3 x 3}: {@code a=0.955, b=1.3693}
6349     *     </li>
6350     *     <li>
6351     *      {@code 5 x 5}: {@code a=1, b=1.4, c=2.1969}
6352     *     </li>
6353     *   </ul>
6354     *   <li>
6355     *  DIST_C: {@code a = 1, b = 1}
6356     *   </li>
6357     * </ul>
6358     *
6359     * Typically, for a fast, coarse distance estimation #DIST_L2, a \(3\times 3\) mask is used. For a
6360     * more accurate distance estimation #DIST_L2, a \(5\times 5\) mask or the precise algorithm is used.
6361     * Note that both the precise and the approximate algorithms are linear on the number of pixels.
6362     *
6363     * This variant of the function does not only compute the minimum distance for each pixel \((x, y)\)
6364     * but also identifies the nearest connected component consisting of zero pixels
6365     * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
6366     * component/pixel is stored in {@code labels(x, y)}. When labelType==#DIST_LABEL_CCOMP, the function
6367     * automatically finds connected components of zero pixels in the input image and marks them with
6368     * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
6369     * marks all the zero pixels with distinct labels.
6370     *
6371     * In this mode, the complexity is still linear. That is, the function provides a very fast way to
6372     * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
6373     * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
6374     * yet.
6375     *
6376     * @param src 8-bit, single-channel (binary) source image.
6377     * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
6378     * single-channel image of the same size as src.
6379     * @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
6380     * CV_32SC1 and the same size as src.
6381     * @param distanceType Type of distance, see #DistanceTypes
6382     * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
6383     * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
6384     * the parameter is forced to 3 because a \(3\times 3\) mask gives the same result as \(5\times
6385     * 5\) or any larger aperture.
6386     */
6387    public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize) {
6388        distanceTransformWithLabels_1(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize);
6389    }
6390
6391
6392    //
6393    // C++:  void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F)
6394    //
6395
6396    /**
6397     *
6398     * @param src 8-bit, single-channel (binary) source image.
6399     * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
6400     * single-channel image of the same size as src .
6401     * @param distanceType Type of distance, see #DistanceTypes
6402     * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
6403     * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \(3\times 3\) mask gives
6404     * the same result as \(5\times 5\) or any larger aperture.
6405     * @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
6406     * the first variant of the function and distanceType == #DIST_L1.
6407     */
6408    public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize, int dstType) {
6409        distanceTransform_0(src.nativeObj, dst.nativeObj, distanceType, maskSize, dstType);
6410    }
6411
6412    /**
6413     *
6414     * @param src 8-bit, single-channel (binary) source image.
6415     * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
6416     * single-channel image of the same size as src .
6417     * @param distanceType Type of distance, see #DistanceTypes
6418     * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
6419     * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \(3\times 3\) mask gives
6420     * the same result as \(5\times 5\) or any larger aperture.
6421     * the first variant of the function and distanceType == #DIST_L1.
6422     */
6423    public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize) {
6424        distanceTransform_1(src.nativeObj, dst.nativeObj, distanceType, maskSize);
6425    }
6426
6427
6428    //
6429    // C++:  int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4)
6430    //
6431
6432    /**
6433     * Fills a connected component with the given color.
6434     *
6435     * The function cv::floodFill fills a connected component starting from the seed point with the specified
6436     * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
6437     * pixel at \((x,y)\) is considered to belong to the repainted domain if:
6438     *
6439     * <ul>
6440     *   <li>
6441     *  in case of a grayscale image and floating range
6442     * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\)
6443     *   </li>
6444     * </ul>
6445     *
6446     *
6447     * <ul>
6448     *   <li>
6449     *  in case of a grayscale image and fixed range
6450     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\)
6451     *   </li>
6452     * </ul>
6453     *
6454     *
6455     * <ul>
6456     *   <li>
6457     *  in case of a color image and floating range
6458     * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\)
6459     * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\)
6460     * and
6461     * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\)
6462     *   </li>
6463     * </ul>
6464     *
6465     *
6466     * <ul>
6467     *   <li>
6468     *  in case of a color image and fixed range
6469     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\)
6470     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\)
6471     * and
6472     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\)
6473     *   </li>
6474     * </ul>
6475     *
6476     *
6477     * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the
6478     * component. That is, to be added to the connected component, a color/brightness of the pixel should
6479     * be close enough to:
6480     * <ul>
6481     *   <li>
6482     *  Color/brightness of one of its neighbors that already belong to the connected component in case
6483     * of a floating range.
6484     *   </li>
6485     *   <li>
6486     *  Color/brightness of the seed point in case of a fixed range.
6487     *   </li>
6488     * </ul>
6489     *
6490     * Use these functions to either mark a connected component with the specified color in-place, or build
6491     * a mask and then extract the contour, or copy the region to another image, and so on.
6492     *
6493     * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
6494     * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
6495     * the details below.
6496     * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
6497     * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
6498     * input and output parameter, you must take responsibility of initializing it.
6499     * Flood-filling cannot go across non-zero pixels in the input mask. For example,
6500     * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
6501     * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
6502     * as described below. Additionally, the function fills the border of the mask with ones to simplify
6503     * internal processing. It is therefore possible to use the same mask in multiple calls to the function
6504     * to make sure the filled areas do not overlap.
6505     * @param seedPoint Starting point.
6506     * @param newVal New value of the repainted domain pixels.
6507     * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
6508     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6509     * @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
6510     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6511     * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
6512     * repainted domain.
6513     * @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
6514     * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
6515     * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
6516     * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
6517     * the mask (the default value is 1). For example, 4 | ( 255 &lt;&lt; 8 ) will consider 4 nearest
6518     * neighbours and fill the mask with a value of 255. The following additional options occupy higher
6519     * bits and therefore may be further combined with the connectivity and mask fill values using
6520     * bit-wise or (|), see #FloodFillFlags.
6521     *
6522     * <b>Note:</b> Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the
6523     * pixel \((x+1, y+1)\) in the mask .
6524     *
6525     * SEE: findContours
6526     * @return automatically generated
6527     */
6528    public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff, int flags) {
6529        double[] rect_out = new double[4];
6530        int retVal = floodFill_0(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3], flags);
6531        if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } 
6532        return retVal;
6533    }
6534
6535    /**
6536     * Fills a connected component with the given color.
6537     *
6538     * The function cv::floodFill fills a connected component starting from the seed point with the specified
6539     * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
6540     * pixel at \((x,y)\) is considered to belong to the repainted domain if:
6541     *
6542     * <ul>
6543     *   <li>
6544     *  in case of a grayscale image and floating range
6545     * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\)
6546     *   </li>
6547     * </ul>
6548     *
6549     *
6550     * <ul>
6551     *   <li>
6552     *  in case of a grayscale image and fixed range
6553     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\)
6554     *   </li>
6555     * </ul>
6556     *
6557     *
6558     * <ul>
6559     *   <li>
6560     *  in case of a color image and floating range
6561     * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\)
6562     * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\)
6563     * and
6564     * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\)
6565     *   </li>
6566     * </ul>
6567     *
6568     *
6569     * <ul>
6570     *   <li>
6571     *  in case of a color image and fixed range
6572     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\)
6573     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\)
6574     * and
6575     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\)
6576     *   </li>
6577     * </ul>
6578     *
6579     *
6580     * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the
6581     * component. That is, to be added to the connected component, a color/brightness of the pixel should
6582     * be close enough to:
6583     * <ul>
6584     *   <li>
6585     *  Color/brightness of one of its neighbors that already belong to the connected component in case
6586     * of a floating range.
6587     *   </li>
6588     *   <li>
6589     *  Color/brightness of the seed point in case of a fixed range.
6590     *   </li>
6591     * </ul>
6592     *
6593     * Use these functions to either mark a connected component with the specified color in-place, or build
6594     * a mask and then extract the contour, or copy the region to another image, and so on.
6595     *
6596     * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
6597     * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
6598     * the details below.
6599     * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
6600     * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
6601     * input and output parameter, you must take responsibility of initializing it.
6602     * Flood-filling cannot go across non-zero pixels in the input mask. For example,
6603     * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
6604     * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
6605     * as described below. Additionally, the function fills the border of the mask with ones to simplify
6606     * internal processing. It is therefore possible to use the same mask in multiple calls to the function
6607     * to make sure the filled areas do not overlap.
6608     * @param seedPoint Starting point.
6609     * @param newVal New value of the repainted domain pixels.
6610     * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
6611     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6612     * @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
6613     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6614     * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
6615     * repainted domain.
6616     * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
6617     * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
6618     * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
6619     * the mask (the default value is 1). For example, 4 | ( 255 &lt;&lt; 8 ) will consider 4 nearest
6620     * neighbours and fill the mask with a value of 255. The following additional options occupy higher
6621     * bits and therefore may be further combined with the connectivity and mask fill values using
6622     * bit-wise or (|), see #FloodFillFlags.
6623     *
6624     * <b>Note:</b> Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the
6625     * pixel \((x+1, y+1)\) in the mask .
6626     *
6627     * SEE: findContours
6628     * @return automatically generated
6629     */
6630    public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff) {
6631        double[] rect_out = new double[4];
6632        int retVal = floodFill_1(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3]);
6633        if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } 
6634        return retVal;
6635    }
6636
6637    /**
6638     * Fills a connected component with the given color.
6639     *
6640     * The function cv::floodFill fills a connected component starting from the seed point with the specified
6641     * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
6642     * pixel at \((x,y)\) is considered to belong to the repainted domain if:
6643     *
6644     * <ul>
6645     *   <li>
6646     *  in case of a grayscale image and floating range
6647     * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\)
6648     *   </li>
6649     * </ul>
6650     *
6651     *
6652     * <ul>
6653     *   <li>
6654     *  in case of a grayscale image and fixed range
6655     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\)
6656     *   </li>
6657     * </ul>
6658     *
6659     *
6660     * <ul>
6661     *   <li>
6662     *  in case of a color image and floating range
6663     * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\)
6664     * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\)
6665     * and
6666     * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\)
6667     *   </li>
6668     * </ul>
6669     *
6670     *
6671     * <ul>
6672     *   <li>
6673     *  in case of a color image and fixed range
6674     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\)
6675     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\)
6676     * and
6677     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\)
6678     *   </li>
6679     * </ul>
6680     *
6681     *
6682     * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the
6683     * component. That is, to be added to the connected component, a color/brightness of the pixel should
6684     * be close enough to:
6685     * <ul>
6686     *   <li>
6687     *  Color/brightness of one of its neighbors that already belong to the connected component in case
6688     * of a floating range.
6689     *   </li>
6690     *   <li>
6691     *  Color/brightness of the seed point in case of a fixed range.
6692     *   </li>
6693     * </ul>
6694     *
6695     * Use these functions to either mark a connected component with the specified color in-place, or build
6696     * a mask and then extract the contour, or copy the region to another image, and so on.
6697     *
6698     * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
6699     * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
6700     * the details below.
6701     * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
6702     * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
6703     * input and output parameter, you must take responsibility of initializing it.
6704     * Flood-filling cannot go across non-zero pixels in the input mask. For example,
6705     * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
6706     * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
6707     * as described below. Additionally, the function fills the border of the mask with ones to simplify
6708     * internal processing. It is therefore possible to use the same mask in multiple calls to the function
6709     * to make sure the filled areas do not overlap.
6710     * @param seedPoint Starting point.
6711     * @param newVal New value of the repainted domain pixels.
6712     * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
6713     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6714     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6715     * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
6716     * repainted domain.
6717     * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
6718     * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
6719     * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
6720     * the mask (the default value is 1). For example, 4 | ( 255 &lt;&lt; 8 ) will consider 4 nearest
6721     * neighbours and fill the mask with a value of 255. The following additional options occupy higher
6722     * bits and therefore may be further combined with the connectivity and mask fill values using
6723     * bit-wise or (|), see #FloodFillFlags.
6724     *
6725     * <b>Note:</b> Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the
6726     * pixel \((x+1, y+1)\) in the mask .
6727     *
6728     * SEE: findContours
6729     * @return automatically generated
6730     */
6731    public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff) {
6732        double[] rect_out = new double[4];
6733        int retVal = floodFill_2(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3]);
6734        if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } 
6735        return retVal;
6736    }
6737
6738    /**
6739     * Fills a connected component with the given color.
6740     *
6741     * The function cv::floodFill fills a connected component starting from the seed point with the specified
6742     * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
6743     * pixel at \((x,y)\) is considered to belong to the repainted domain if:
6744     *
6745     * <ul>
6746     *   <li>
6747     *  in case of a grayscale image and floating range
6748     * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\)
6749     *   </li>
6750     * </ul>
6751     *
6752     *
6753     * <ul>
6754     *   <li>
6755     *  in case of a grayscale image and fixed range
6756     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\)
6757     *   </li>
6758     * </ul>
6759     *
6760     *
6761     * <ul>
6762     *   <li>
6763     *  in case of a color image and floating range
6764     * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\)
6765     * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\)
6766     * and
6767     * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\)
6768     *   </li>
6769     * </ul>
6770     *
6771     *
6772     * <ul>
6773     *   <li>
6774     *  in case of a color image and fixed range
6775     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\)
6776     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\)
6777     * and
6778     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\)
6779     *   </li>
6780     * </ul>
6781     *
6782     *
6783     * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the
6784     * component. That is, to be added to the connected component, a color/brightness of the pixel should
6785     * be close enough to:
6786     * <ul>
6787     *   <li>
6788     *  Color/brightness of one of its neighbors that already belong to the connected component in case
6789     * of a floating range.
6790     *   </li>
6791     *   <li>
6792     *  Color/brightness of the seed point in case of a fixed range.
6793     *   </li>
6794     * </ul>
6795     *
6796     * Use these functions to either mark a connected component with the specified color in-place, or build
6797     * a mask and then extract the contour, or copy the region to another image, and so on.
6798     *
6799     * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
6800     * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
6801     * the details below.
6802     * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
6803     * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
6804     * input and output parameter, you must take responsibility of initializing it.
6805     * Flood-filling cannot go across non-zero pixels in the input mask. For example,
6806     * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
6807     * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
6808     * as described below. Additionally, the function fills the border of the mask with ones to simplify
6809     * internal processing. It is therefore possible to use the same mask in multiple calls to the function
6810     * to make sure the filled areas do not overlap.
6811     * @param seedPoint Starting point.
6812     * @param newVal New value of the repainted domain pixels.
6813     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6814     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6815     * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
6816     * repainted domain.
6817     * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
6818     * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
6819     * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
6820     * the mask (the default value is 1). For example, 4 | ( 255 &lt;&lt; 8 ) will consider 4 nearest
6821     * neighbours and fill the mask with a value of 255. The following additional options occupy higher
6822     * bits and therefore may be further combined with the connectivity and mask fill values using
6823     * bit-wise or (|), see #FloodFillFlags.
6824     *
6825     * <b>Note:</b> Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the
6826     * pixel \((x+1, y+1)\) in the mask .
6827     *
6828     * SEE: findContours
6829     * @return automatically generated
6830     */
6831    public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect) {
6832        double[] rect_out = new double[4];
6833        int retVal = floodFill_3(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out);
6834        if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } 
6835        return retVal;
6836    }
6837
6838    /**
6839     * Fills a connected component with the given color.
6840     *
6841     * The function cv::floodFill fills a connected component starting from the seed point with the specified
6842     * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
6843     * pixel at \((x,y)\) is considered to belong to the repainted domain if:
6844     *
6845     * <ul>
6846     *   <li>
6847     *  in case of a grayscale image and floating range
6848     * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\)
6849     *   </li>
6850     * </ul>
6851     *
6852     *
6853     * <ul>
6854     *   <li>
6855     *  in case of a grayscale image and fixed range
6856     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\)
6857     *   </li>
6858     * </ul>
6859     *
6860     *
6861     * <ul>
6862     *   <li>
6863     *  in case of a color image and floating range
6864     * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\)
6865     * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\)
6866     * and
6867     * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\)
6868     *   </li>
6869     * </ul>
6870     *
6871     *
6872     * <ul>
6873     *   <li>
6874     *  in case of a color image and fixed range
6875     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\)
6876     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\)
6877     * and
6878     * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\)
6879     *   </li>
6880     * </ul>
6881     *
6882     *
6883     * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the
6884     * component. That is, to be added to the connected component, a color/brightness of the pixel should
6885     * be close enough to:
6886     * <ul>
6887     *   <li>
6888     *  Color/brightness of one of its neighbors that already belong to the connected component in case
6889     * of a floating range.
6890     *   </li>
6891     *   <li>
6892     *  Color/brightness of the seed point in case of a fixed range.
6893     *   </li>
6894     * </ul>
6895     *
6896     * Use these functions to either mark a connected component with the specified color in-place, or build
6897     * a mask and then extract the contour, or copy the region to another image, and so on.
6898     *
6899     * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
6900     * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
6901     * the details below.
6902     * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
6903     * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
6904     * input and output parameter, you must take responsibility of initializing it.
6905     * Flood-filling cannot go across non-zero pixels in the input mask. For example,
6906     * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
6907     * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
6908     * as described below. Additionally, the function fills the border of the mask with ones to simplify
6909     * internal processing. It is therefore possible to use the same mask in multiple calls to the function
6910     * to make sure the filled areas do not overlap.
6911     * @param seedPoint Starting point.
6912     * @param newVal New value of the repainted domain pixels.
6913     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6914     * one of its neighbors belonging to the component, or a seed pixel being added to the component.
6915     * repainted domain.
6916     * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
6917     * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
6918     * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
6919     * the mask (the default value is 1). For example, 4 | ( 255 &lt;&lt; 8 ) will consider 4 nearest
6920     * neighbours and fill the mask with a value of 255. The following additional options occupy higher
6921     * bits and therefore may be further combined with the connectivity and mask fill values using
6922     * bit-wise or (|), see #FloodFillFlags.
6923     *
6924     * <b>Note:</b> Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the
6925     * pixel \((x+1, y+1)\) in the mask .
6926     *
6927     * SEE: findContours
6928     * @return automatically generated
6929     */
6930    public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal) {
6931        return floodFill_4(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3]);
6932    }
6933
6934
6935    //
6936    // C++:  void cv::blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat& dst)
6937    //
6938
6939    /**
6940     *
6941     *
6942     * variant without {@code mask} parameter
6943     * @param src1 automatically generated
6944     * @param src2 automatically generated
6945     * @param weights1 automatically generated
6946     * @param weights2 automatically generated
6947     * @param dst automatically generated
6948     */
6949    public static void blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat dst) {
6950        blendLinear_0(src1.nativeObj, src2.nativeObj, weights1.nativeObj, weights2.nativeObj, dst.nativeObj);
6951    }
6952
6953
6954    //
6955    // C++:  void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0)
6956    //
6957
6958    /**
6959     * Converts an image from one color space to another.
6960     *
6961     * The function converts an input image from one color space to another. In case of a transformation
6962     * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
6963     * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
6964     * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
6965     * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
6966     * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
6967     *
6968     * The conventional ranges for R, G, and B channel values are:
6969     * <ul>
6970     *   <li>
6971     *    0 to 255 for CV_8U images
6972     *   </li>
6973     *   <li>
6974     *    0 to 65535 for CV_16U images
6975     *   </li>
6976     *   <li>
6977     *    0 to 1 for CV_32F images
6978     *   </li>
6979     * </ul>
6980     *
6981     * In case of linear transformations, the range does not matter. But in case of a non-linear
6982     * transformation, an input RGB image should be normalized to the proper value range to get the correct
6983     * results, for example, for RGB \(\rightarrow\) L\*u\*v\* transformation. For example, if you have a
6984     * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
6985     * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
6986     * you need first to scale the image down:
6987     * <code>
6988     *     img *= 1./255;
6989     *     cvtColor(img, img, COLOR_BGR2Luv);
6990     * </code>
6991     * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
6992     * applications, this will not be noticeable but it is recommended to use 32-bit images in applications
6993     * that need the full range of colors or that convert an image before an operation and then convert
6994     * back.
6995     *
6996     * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
6997     * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
6998     *
6999     * @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
7000     * floating-point.
7001     * @param dst output image of the same size and depth as src.
7002     * @param code color space conversion code (see #ColorConversionCodes).
7003     * @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
7004     * channels is derived automatically from src and code.
7005     *
7006     * SEE: REF: imgproc_color_conversions
7007     */
7008    public static void cvtColor(Mat src, Mat dst, int code, int dstCn) {
7009        cvtColor_0(src.nativeObj, dst.nativeObj, code, dstCn);
7010    }
7011
7012    /**
7013     * Converts an image from one color space to another.
7014     *
7015     * The function converts an input image from one color space to another. In case of a transformation
7016     * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
7017     * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
7018     * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
7019     * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
7020     * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
7021     *
7022     * The conventional ranges for R, G, and B channel values are:
7023     * <ul>
7024     *   <li>
7025     *    0 to 255 for CV_8U images
7026     *   </li>
7027     *   <li>
7028     *    0 to 65535 for CV_16U images
7029     *   </li>
7030     *   <li>
7031     *    0 to 1 for CV_32F images
7032     *   </li>
7033     * </ul>
7034     *
7035     * In case of linear transformations, the range does not matter. But in case of a non-linear
7036     * transformation, an input RGB image should be normalized to the proper value range to get the correct
7037     * results, for example, for RGB \(\rightarrow\) L\*u\*v\* transformation. For example, if you have a
7038     * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
7039     * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
7040     * you need first to scale the image down:
7041     * <code>
7042     *     img *= 1./255;
7043     *     cvtColor(img, img, COLOR_BGR2Luv);
7044     * </code>
7045     * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
7046     * applications, this will not be noticeable but it is recommended to use 32-bit images in applications
7047     * that need the full range of colors or that convert an image before an operation and then convert
7048     * back.
7049     *
7050     * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
7051     * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
7052     *
7053     * @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
7054     * floating-point.
7055     * @param dst output image of the same size and depth as src.
7056     * @param code color space conversion code (see #ColorConversionCodes).
7057     * channels is derived automatically from src and code.
7058     *
7059     * SEE: REF: imgproc_color_conversions
7060     */
7061    public static void cvtColor(Mat src, Mat dst, int code) {
7062        cvtColor_1(src.nativeObj, dst.nativeObj, code);
7063    }
7064
7065
7066    //
7067    // C++:  void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code)
7068    //
7069
7070    /**
7071     * Converts an image from one color space to another where the source image is
7072     * stored in two planes.
7073     *
7074     * This function only supports YUV420 to RGB conversion as of now.
7075     *
7076     * <ul>
7077     *   <li>
7078     *  #COLOR_YUV2BGR_NV12
7079     *   </li>
7080     *   <li>
7081     *  #COLOR_YUV2RGB_NV12
7082     *   </li>
7083     *   <li>
7084     *  #COLOR_YUV2BGRA_NV12
7085     *   </li>
7086     *   <li>
7087     *  #COLOR_YUV2RGBA_NV12
7088     *   </li>
7089     *   <li>
7090     *  #COLOR_YUV2BGR_NV21
7091     *   </li>
7092     *   <li>
7093     *  #COLOR_YUV2RGB_NV21
7094     *   </li>
7095     *   <li>
7096     *  #COLOR_YUV2BGRA_NV21
7097     *   </li>
7098     *   <li>
7099     *  #COLOR_YUV2RGBA_NV21
7100     *   </li>
7101     * </ul>
7102     * @param src1 automatically generated
7103     * @param src2 automatically generated
7104     * @param dst automatically generated
7105     * @param code automatically generated
7106     */
7107    public static void cvtColorTwoPlane(Mat src1, Mat src2, Mat dst, int code) {
7108        cvtColorTwoPlane_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, code);
7109    }
7110
7111
7112    //
7113    // C++:  void cv::demosaicing(Mat src, Mat& dst, int code, int dstCn = 0)
7114    //
7115
7116    /**
7117     * main function for all demosaicing processes
7118     *
7119     * @param src input image: 8-bit unsigned or 16-bit unsigned.
7120     * @param dst output image of the same size and depth as src.
7121     * @param code Color space conversion code (see the description below).
7122     * @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
7123     * channels is derived automatically from src and code.
7124     *
7125     * The function can do the following transformations:
7126     *
7127     * <ul>
7128     *   <li>
7129     *    Demosaicing using bilinear interpolation
7130     *   </li>
7131     * </ul>
7132     *
7133     *     #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
7134     *
7135     *     #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
7136     *
7137     * <ul>
7138     *   <li>
7139     *    Demosaicing using Variable Number of Gradients.
7140     *   </li>
7141     * </ul>
7142     *
7143     *     #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
7144     *
7145     * <ul>
7146     *   <li>
7147     *    Edge-Aware Demosaicing.
7148     *   </li>
7149     * </ul>
7150     *
7151     *     #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
7152     *
7153     * <ul>
7154     *   <li>
7155     *    Demosaicing with alpha channel
7156     *   </li>
7157     * </ul>
7158     *
7159     *     #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
7160     *
7161     * SEE: cvtColor
7162     */
7163    public static void demosaicing(Mat src, Mat dst, int code, int dstCn) {
7164        demosaicing_0(src.nativeObj, dst.nativeObj, code, dstCn);
7165    }
7166
7167    /**
7168     * main function for all demosaicing processes
7169     *
7170     * @param src input image: 8-bit unsigned or 16-bit unsigned.
7171     * @param dst output image of the same size and depth as src.
7172     * @param code Color space conversion code (see the description below).
7173     * channels is derived automatically from src and code.
7174     *
7175     * The function can do the following transformations:
7176     *
7177     * <ul>
7178     *   <li>
7179     *    Demosaicing using bilinear interpolation
7180     *   </li>
7181     * </ul>
7182     *
7183     *     #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
7184     *
7185     *     #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
7186     *
7187     * <ul>
7188     *   <li>
7189     *    Demosaicing using Variable Number of Gradients.
7190     *   </li>
7191     * </ul>
7192     *
7193     *     #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
7194     *
7195     * <ul>
7196     *   <li>
7197     *    Edge-Aware Demosaicing.
7198     *   </li>
7199     * </ul>
7200     *
7201     *     #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
7202     *
7203     * <ul>
7204     *   <li>
7205     *    Demosaicing with alpha channel
7206     *   </li>
7207     * </ul>
7208     *
7209     *     #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
7210     *
7211     * SEE: cvtColor
7212     */
7213    public static void demosaicing(Mat src, Mat dst, int code) {
7214        demosaicing_1(src.nativeObj, dst.nativeObj, code);
7215    }
7216
7217
7218    //
7219    // C++:  Moments cv::moments(Mat array, bool binaryImage = false)
7220    //
7221
7222    /**
7223     * Calculates all of the moments up to the third order of a polygon or rasterized shape.
7224     *
7225     * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
7226     * results are returned in the structure cv::Moments.
7227     *
7228     * @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
7229     * \(1 \times N\) or \(N \times 1\) ) of 2D points (Point or Point2f ).
7230     * @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
7231     * used for images only.
7232     * @return moments.
7233     *
7234     * <b>Note:</b> Only applicable to contour moments calculations from Python bindings: Note that the numpy
7235     * type for the input array should be either np.int32 or np.float32.
7236     *
7237     * SEE:  contourArea, arcLength
7238     */
7239    public static Moments moments(Mat array, boolean binaryImage) {
7240        return new Moments(moments_0(array.nativeObj, binaryImage));
7241    }
7242
7243    /**
7244     * Calculates all of the moments up to the third order of a polygon or rasterized shape.
7245     *
7246     * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
7247     * results are returned in the structure cv::Moments.
7248     *
7249     * @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
7250     * \(1 \times N\) or \(N \times 1\) ) of 2D points (Point or Point2f ).
7251     * used for images only.
7252     * @return moments.
7253     *
7254     * <b>Note:</b> Only applicable to contour moments calculations from Python bindings: Note that the numpy
7255     * type for the input array should be either np.int32 or np.float32.
7256     *
7257     * SEE:  contourArea, arcLength
7258     */
7259    public static Moments moments(Mat array) {
7260        return new Moments(moments_1(array.nativeObj));
7261    }
7262
7263
7264    //
7265    // C++:  void cv::HuMoments(Moments m, Mat& hu)
7266    //
7267
7268    public static void HuMoments(Moments m, Mat hu) {
7269        HuMoments_0(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03, hu.nativeObj);
7270    }
7271
7272
7273    //
7274    // C++:  void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat())
7275    //
7276
7277    /**
7278     * Compares a template against overlapped image regions.
7279     *
7280     * The function slides through image , compares the overlapped patches of size \(w \times h\) against
7281     * templ using the specified method and stores the comparison results in result . #TemplateMatchModes
7282     * describes the formulae for the available comparison methods ( \(I\) denotes image, \(T\)
7283     * template, \(R\) result, \(M\) the optional mask ). The summation is done over template and/or
7284     * the image patch: \(x' = 0...w-1, y' = 0...h-1\)
7285     *
7286     * After the function finishes the comparison, the best matches can be found as global minimums (when
7287     * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
7288     * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
7289     * the denominator is done over all of the channels and separate mean values are used for each channel.
7290     * That is, the function can take a color template and a color image. The result will still be a
7291     * single-channel image, which is easier to analyze.
7292     *
7293     * @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
7294     * @param templ Searched template. It must be not greater than the source image and have the same
7295     * data type.
7296     * @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
7297     * is \(W \times H\) and templ is \(w \times h\) , then result is \((W-w+1) \times (H-h+1)\) .
7298     * @param method Parameter specifying the comparison method, see #TemplateMatchModes
7299     * @param mask Optional mask. It must have the same size as templ. It must either have the same number
7300     *             of channels as template or only one channel, which is then used for all template and
7301     *             image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
7302     *             meaning only elements where mask is nonzero are used and are kept unchanged independent
7303     *             of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
7304     *             used as weights. The exact formulas are documented in #TemplateMatchModes.
7305     */
7306    public static void matchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask) {
7307        matchTemplate_0(image.nativeObj, templ.nativeObj, result.nativeObj, method, mask.nativeObj);
7308    }
7309
7310    /**
7311     * Compares a template against overlapped image regions.
7312     *
7313     * The function slides through image , compares the overlapped patches of size \(w \times h\) against
7314     * templ using the specified method and stores the comparison results in result . #TemplateMatchModes
7315     * describes the formulae for the available comparison methods ( \(I\) denotes image, \(T\)
7316     * template, \(R\) result, \(M\) the optional mask ). The summation is done over template and/or
7317     * the image patch: \(x' = 0...w-1, y' = 0...h-1\)
7318     *
7319     * After the function finishes the comparison, the best matches can be found as global minimums (when
7320     * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
7321     * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
7322     * the denominator is done over all of the channels and separate mean values are used for each channel.
7323     * That is, the function can take a color template and a color image. The result will still be a
7324     * single-channel image, which is easier to analyze.
7325     *
7326     * @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
7327     * @param templ Searched template. It must be not greater than the source image and have the same
7328     * data type.
7329     * @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
7330     * is \(W \times H\) and templ is \(w \times h\) , then result is \((W-w+1) \times (H-h+1)\) .
7331     * @param method Parameter specifying the comparison method, see #TemplateMatchModes
7332     *             of channels as template or only one channel, which is then used for all template and
7333     *             image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
7334     *             meaning only elements where mask is nonzero are used and are kept unchanged independent
7335     *             of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
7336     *             used as weights. The exact formulas are documented in #TemplateMatchModes.
7337     */
7338    public static void matchTemplate(Mat image, Mat templ, Mat result, int method) {
7339        matchTemplate_1(image.nativeObj, templ.nativeObj, result.nativeObj, method);
7340    }
7341
7342
7343    //
7344    // C++:  int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype)
7345    //
7346
7347    /**
7348     * computes the connected components labeled image of boolean image
7349     *
7350     * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
7351     * represents the background label. ltype specifies the output label image type, an important
7352     * consideration based on the total number of labels or alternatively the total number of pixels in
7353     * the source image. ccltype specifies the connected components labeling algorithm to use, currently
7354     * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms
7355     * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
7356     * a row major ordering of labels while Spaghetti and BBDT do not.
7357     * This function uses parallel version of the algorithms if at least one allowed
7358     * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
7359     *
7360     * @param image the 8-bit single-channel image to be labeled
7361     * @param labels destination labeled image
7362     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7363     * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
7364     * @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
7365     * @return automatically generated
7366     */
7367    public static int connectedComponentsWithAlgorithm(Mat image, Mat labels, int connectivity, int ltype, int ccltype) {
7368        return connectedComponentsWithAlgorithm_0(image.nativeObj, labels.nativeObj, connectivity, ltype, ccltype);
7369    }
7370
7371
7372    //
7373    // C++:  int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S)
7374    //
7375
7376    /**
7377     *
7378     *
7379     * @param image the 8-bit single-channel image to be labeled
7380     * @param labels destination labeled image
7381     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7382     * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
7383     * @return automatically generated
7384     */
7385    public static int connectedComponents(Mat image, Mat labels, int connectivity, int ltype) {
7386        return connectedComponents_0(image.nativeObj, labels.nativeObj, connectivity, ltype);
7387    }
7388
7389    /**
7390     *
7391     *
7392     * @param image the 8-bit single-channel image to be labeled
7393     * @param labels destination labeled image
7394     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7395     * @return automatically generated
7396     */
7397    public static int connectedComponents(Mat image, Mat labels, int connectivity) {
7398        return connectedComponents_1(image.nativeObj, labels.nativeObj, connectivity);
7399    }
7400
7401    /**
7402     *
7403     *
7404     * @param image the 8-bit single-channel image to be labeled
7405     * @param labels destination labeled image
7406     * @return automatically generated
7407     */
7408    public static int connectedComponents(Mat image, Mat labels) {
7409        return connectedComponents_2(image.nativeObj, labels.nativeObj);
7410    }
7411
7412
7413    //
7414    // C++:  int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype)
7415    //
7416
7417    /**
7418     * computes the connected components labeled image of boolean image and also produces a statistics output for each label
7419     *
7420     * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
7421     * represents the background label. ltype specifies the output label image type, an important
7422     * consideration based on the total number of labels or alternatively the total number of pixels in
7423     * the source image. ccltype specifies the connected components labeling algorithm to use, currently
7424     * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms
7425     * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
7426     * a row major ordering of labels while Spaghetti and BBDT do not.
7427     * This function uses parallel version of the algorithms (statistics included) if at least one allowed
7428     * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
7429     *
7430     * @param image the 8-bit single-channel image to be labeled
7431     * @param labels destination labeled image
7432     * @param stats statistics output for each label, including the background label.
7433     * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
7434     * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
7435     * @param centroids centroid output for each label, including the background label. Centroids are
7436     * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
7437     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7438     * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
7439     * @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
7440     * @return automatically generated
7441     */
7442    public static int connectedComponentsWithStatsWithAlgorithm(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype) {
7443        return connectedComponentsWithStatsWithAlgorithm_0(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype, ccltype);
7444    }
7445
7446
7447    //
7448    // C++:  int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S)
7449    //
7450
7451    /**
7452     *
7453     * @param image the 8-bit single-channel image to be labeled
7454     * @param labels destination labeled image
7455     * @param stats statistics output for each label, including the background label.
7456     * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
7457     * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
7458     * @param centroids centroid output for each label, including the background label. Centroids are
7459     * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
7460     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7461     * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
7462     * @return automatically generated
7463     */
7464    public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype) {
7465        return connectedComponentsWithStats_0(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype);
7466    }
7467
7468    /**
7469     *
7470     * @param image the 8-bit single-channel image to be labeled
7471     * @param labels destination labeled image
7472     * @param stats statistics output for each label, including the background label.
7473     * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
7474     * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
7475     * @param centroids centroid output for each label, including the background label. Centroids are
7476     * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
7477     * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
7478     * @return automatically generated
7479     */
7480    public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity) {
7481        return connectedComponentsWithStats_1(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity);
7482    }
7483
7484    /**
7485     *
7486     * @param image the 8-bit single-channel image to be labeled
7487     * @param labels destination labeled image
7488     * @param stats statistics output for each label, including the background label.
7489     * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
7490     * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
7491     * @param centroids centroid output for each label, including the background label. Centroids are
7492     * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
7493     * @return automatically generated
7494     */
7495    public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids) {
7496        return connectedComponentsWithStats_2(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj);
7497    }
7498
7499
7500    //
7501    // C++:  void cv::findContours(Mat image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point())
7502    //
7503
7504    /**
7505     * Finds contours in a binary image.
7506     *
7507     * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours
7508     * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
7509     * OpenCV sample directory.
7510     * <b>Note:</b> Since opencv 3.2 source image is not modified by this function.
7511     *
7512     * @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
7513     * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
7514     * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
7515     * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
7516     * @param contours Detected contours. Each contour is stored as a vector of points (e.g.
7517     * std::vector&lt;std::vector&lt;cv::Point&gt; &gt;).
7518     * @param hierarchy Optional output vector (e.g. std::vector&lt;cv::Vec4i&gt;), containing information about the image topology. It has
7519     * as many elements as the number of contours. For each i-th contour contours[i], the elements
7520     * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
7521     * in contours of the next and previous contours at the same hierarchical level, the first child
7522     * contour and the parent contour, respectively. If for the contour i there are no next, previous,
7523     * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
7524     * <b>Note:</b> In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
7525     * @param mode Contour retrieval mode, see #RetrievalModes
7526     * @param method Contour approximation method, see #ContourApproximationModes
7527     * @param offset Optional offset by which every contour point is shifted. This is useful if the
7528     * contours are extracted from the image ROI and then they should be analyzed in the whole image
7529     * context.
7530     */
7531    public static void findContours(Mat image, List<MatOfPoint> contours, Mat hierarchy, int mode, int method, Point offset) {
7532        Mat contours_mat = new Mat();
7533        findContours_0(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method, offset.x, offset.y);
7534        Converters.Mat_to_vector_vector_Point(contours_mat, contours);
7535        contours_mat.release();
7536    }
7537
7538    /**
7539     * Finds contours in a binary image.
7540     *
7541     * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours
7542     * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
7543     * OpenCV sample directory.
7544     * <b>Note:</b> Since opencv 3.2 source image is not modified by this function.
7545     *
7546     * @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
7547     * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
7548     * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
7549     * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
7550     * @param contours Detected contours. Each contour is stored as a vector of points (e.g.
7551     * std::vector&lt;std::vector&lt;cv::Point&gt; &gt;).
7552     * @param hierarchy Optional output vector (e.g. std::vector&lt;cv::Vec4i&gt;), containing information about the image topology. It has
7553     * as many elements as the number of contours. For each i-th contour contours[i], the elements
7554     * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
7555     * in contours of the next and previous contours at the same hierarchical level, the first child
7556     * contour and the parent contour, respectively. If for the contour i there are no next, previous,
7557     * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
7558     * <b>Note:</b> In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
7559     * @param mode Contour retrieval mode, see #RetrievalModes
7560     * @param method Contour approximation method, see #ContourApproximationModes
7561     * contours are extracted from the image ROI and then they should be analyzed in the whole image
7562     * context.
7563     */
7564    public static void findContours(Mat image, List<MatOfPoint> contours, Mat hierarchy, int mode, int method) {
7565        Mat contours_mat = new Mat();
7566        findContours_1(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method);
7567        Converters.Mat_to_vector_vector_Point(contours_mat, contours);
7568        contours_mat.release();
7569    }
7570
7571
7572    //
7573    // C++:  void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed)
7574    //
7575
7576    /**
7577     * Approximates a polygonal curve(s) with the specified precision.
7578     *
7579     * The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
7580     * vertices so that the distance between them is less or equal to the specified precision. It uses the
7581     * Douglas-Peucker algorithm &lt;http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm&gt;
7582     *
7583     * @param curve Input vector of a 2D point stored in std::vector or Mat
7584     * @param approxCurve Result of the approximation. The type should match the type of the input curve.
7585     * @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
7586     * between the original curve and its approximation.
7587     * @param closed If true, the approximated curve is closed (its first and last vertices are
7588     * connected). Otherwise, it is not closed.
7589     */
7590    public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, boolean closed) {
7591        Mat curve_mat = curve;
7592        Mat approxCurve_mat = approxCurve;
7593        approxPolyDP_0(curve_mat.nativeObj, approxCurve_mat.nativeObj, epsilon, closed);
7594    }
7595
7596
7597    //
7598    // C++:  double cv::arcLength(vector_Point2f curve, bool closed)
7599    //
7600
7601    /**
7602     * Calculates a contour perimeter or a curve length.
7603     *
7604     * The function computes a curve length or a closed contour perimeter.
7605     *
7606     * @param curve Input vector of 2D points, stored in std::vector or Mat.
7607     * @param closed Flag indicating whether the curve is closed or not.
7608     * @return automatically generated
7609     */
7610    public static double arcLength(MatOfPoint2f curve, boolean closed) {
7611        Mat curve_mat = curve;
7612        return arcLength_0(curve_mat.nativeObj, closed);
7613    }
7614
7615
7616    //
7617    // C++:  Rect cv::boundingRect(Mat array)
7618    //
7619
7620    /**
7621     * Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
7622     *
7623     * The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
7624     * non-zero pixels of gray-scale image.
7625     *
7626     * @param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
7627     * @return automatically generated
7628     */
7629    public static Rect boundingRect(Mat array) {
7630        return new Rect(boundingRect_0(array.nativeObj));
7631    }
7632
7633
7634    //
7635    // C++:  double cv::contourArea(Mat contour, bool oriented = false)
7636    //
7637
7638    /**
7639     * Calculates a contour area.
7640     *
7641     * The function computes a contour area. Similarly to moments , the area is computed using the Green
7642     * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
7643     * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
7644     * results for contours with self-intersections.
7645     *
7646     * Example:
7647     * <code>
7648     *     vector&lt;Point&gt; contour;
7649     *     contour.push_back(Point2f(0, 0));
7650     *     contour.push_back(Point2f(10, 0));
7651     *     contour.push_back(Point2f(10, 10));
7652     *     contour.push_back(Point2f(5, 4));
7653     *
7654     *     double area0 = contourArea(contour);
7655     *     vector&lt;Point&gt; approx;
7656     *     approxPolyDP(contour, approx, 5, true);
7657     *     double area1 = contourArea(approx);
7658     *
7659     *     cout &lt;&lt; "area0 =" &lt;&lt; area0 &lt;&lt; endl &lt;&lt;
7660     *             "area1 =" &lt;&lt; area1 &lt;&lt; endl &lt;&lt;
7661     *             "approx poly vertices" &lt;&lt; approx.size() &lt;&lt; endl;
7662     * </code>
7663     * @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
7664     * @param oriented Oriented area flag. If it is true, the function returns a signed area value,
7665     * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
7666     * determine orientation of a contour by taking the sign of an area. By default, the parameter is
7667     * false, which means that the absolute value is returned.
7668     * @return automatically generated
7669     */
7670    public static double contourArea(Mat contour, boolean oriented) {
7671        return contourArea_0(contour.nativeObj, oriented);
7672    }
7673
7674    /**
7675     * Calculates a contour area.
7676     *
7677     * The function computes a contour area. Similarly to moments , the area is computed using the Green
7678     * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
7679     * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
7680     * results for contours with self-intersections.
7681     *
7682     * Example:
7683     * <code>
7684     *     vector&lt;Point&gt; contour;
7685     *     contour.push_back(Point2f(0, 0));
7686     *     contour.push_back(Point2f(10, 0));
7687     *     contour.push_back(Point2f(10, 10));
7688     *     contour.push_back(Point2f(5, 4));
7689     *
7690     *     double area0 = contourArea(contour);
7691     *     vector&lt;Point&gt; approx;
7692     *     approxPolyDP(contour, approx, 5, true);
7693     *     double area1 = contourArea(approx);
7694     *
7695     *     cout &lt;&lt; "area0 =" &lt;&lt; area0 &lt;&lt; endl &lt;&lt;
7696     *             "area1 =" &lt;&lt; area1 &lt;&lt; endl &lt;&lt;
7697     *             "approx poly vertices" &lt;&lt; approx.size() &lt;&lt; endl;
7698     * </code>
7699     * @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
7700     * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
7701     * determine orientation of a contour by taking the sign of an area. By default, the parameter is
7702     * false, which means that the absolute value is returned.
7703     * @return automatically generated
7704     */
7705    public static double contourArea(Mat contour) {
7706        return contourArea_1(contour.nativeObj);
7707    }
7708
7709
7710    //
7711    // C++:  RotatedRect cv::minAreaRect(vector_Point2f points)
7712    //
7713
7714    /**
7715     * Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
7716     *
7717     * The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
7718     * specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
7719     * indices when data is close to the containing Mat element boundary.
7720     *
7721     * @param points Input vector of 2D points, stored in std::vector&lt;&gt; or Mat
7722     * @return automatically generated
7723     */
7724    public static RotatedRect minAreaRect(MatOfPoint2f points) {
7725        Mat points_mat = points;
7726        return new RotatedRect(minAreaRect_0(points_mat.nativeObj));
7727    }
7728
7729
7730    //
7731    // C++:  void cv::boxPoints(RotatedRect box, Mat& points)
7732    //
7733
7734    /**
7735     * Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
7736     *
7737     * The function finds the four vertices of a rotated rectangle. This function is useful to draw the
7738     * rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
7739     * visit the REF: tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
7740     *
7741     * @param box The input rotated rectangle. It may be the output of
7742     * @param points The output array of four vertices of rectangles.
7743     */
7744    public static void boxPoints(RotatedRect box, Mat points) {
7745        boxPoints_0(box.center.x, box.center.y, box.size.width, box.size.height, box.angle, points.nativeObj);
7746    }
7747
7748
7749    //
7750    // C++:  void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius)
7751    //
7752
7753    /**
7754     * Finds a circle of the minimum area enclosing a 2D point set.
7755     *
7756     * The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
7757     *
7758     * @param points Input vector of 2D points, stored in std::vector&lt;&gt; or Mat
7759     * @param center Output center of the circle.
7760     * @param radius Output radius of the circle.
7761     */
7762    public static void minEnclosingCircle(MatOfPoint2f points, Point center, float[] radius) {
7763        Mat points_mat = points;
7764        double[] center_out = new double[2];
7765        double[] radius_out = new double[1];
7766        minEnclosingCircle_0(points_mat.nativeObj, center_out, radius_out);
7767        if(center!=null){ center.x = center_out[0]; center.y = center_out[1]; } 
7768        if(radius!=null) radius[0] = (float)radius_out[0];
7769    }
7770
7771
7772    //
7773    // C++:  double cv::minEnclosingTriangle(Mat points, Mat& triangle)
7774    //
7775
7776    /**
7777     * Finds a triangle of minimum area enclosing a 2D point set and returns its area.
7778     *
7779     * The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
7780     * area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
7781     * red* and the enclosing triangle in *yellow*.
7782     *
7783     * ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
7784     *
7785     * The implementation of the algorithm is based on O'Rourke's CITE: ORourke86 and Klee and Laskowski's
7786     * CITE: KleeLaskowski85 papers. O'Rourke provides a \(\theta(n)\) algorithm for finding the minimal
7787     * enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
7788     * takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
7789     * 2D point set is required. The complexity of the #convexHull function is \(O(n log(n))\) which is higher
7790     * than \(\theta(n)\). Thus the overall complexity of the function is \(O(n log(n))\).
7791     *
7792     * @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector&lt;&gt; or Mat
7793     * @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
7794     * of the OutputArray must be CV_32F.
7795     * @return automatically generated
7796     */
7797    public static double minEnclosingTriangle(Mat points, Mat triangle) {
7798        return minEnclosingTriangle_0(points.nativeObj, triangle.nativeObj);
7799    }
7800
7801
7802    //
7803    // C++:  double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter)
7804    //
7805
7806    /**
7807     * Compares two shapes.
7808     *
7809     * The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
7810     *
7811     * @param contour1 First contour or grayscale image.
7812     * @param contour2 Second contour or grayscale image.
7813     * @param method Comparison method, see #ShapeMatchModes
7814     * @param parameter Method-specific parameter (not supported now).
7815     * @return automatically generated
7816     */
7817    public static double matchShapes(Mat contour1, Mat contour2, int method, double parameter) {
7818        return matchShapes_0(contour1.nativeObj, contour2.nativeObj, method, parameter);
7819    }
7820
7821
7822    //
7823    // C++:  void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false,  _hidden_  returnPoints = true)
7824    //
7825
7826    /**
7827     * Finds the convex hull of a point set.
7828     *
7829     * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82
7830     * that has *O(N logN)* complexity in the current implementation.
7831     *
7832     * @param points Input 2D point set, stored in std::vector or Mat.
7833     * @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
7834     * the first case, the hull elements are 0-based indices of the convex hull points in the original
7835     * array (since the set of convex hull points is a subset of the original point set). In the second
7836     * case, hull elements are the convex hull points themselves.
7837     * @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
7838     * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
7839     * to the right, and its Y axis pointing upwards.
7840     * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
7841     * output array is std::vector, the flag is ignored, and the output depends on the type of the
7842     * vector: std::vector&lt;int&gt; implies returnPoints=false, std::vector&lt;Point&gt; implies
7843     * returnPoints=true.
7844     *
7845     * <b>Note:</b> {@code points} and {@code hull} should be different arrays, inplace processing isn't supported.
7846     *
7847     * Check REF: tutorial_hull "the corresponding tutorial" for more details.
7848     *
7849     * useful links:
7850     *
7851     * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
7852     */
7853    public static void convexHull(MatOfPoint points, MatOfInt hull, boolean clockwise) {
7854        Mat points_mat = points;
7855        Mat hull_mat = hull;
7856        convexHull_0(points_mat.nativeObj, hull_mat.nativeObj, clockwise);
7857    }
7858
7859    /**
7860     * Finds the convex hull of a point set.
7861     *
7862     * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82
7863     * that has *O(N logN)* complexity in the current implementation.
7864     *
7865     * @param points Input 2D point set, stored in std::vector or Mat.
7866     * @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
7867     * the first case, the hull elements are 0-based indices of the convex hull points in the original
7868     * array (since the set of convex hull points is a subset of the original point set). In the second
7869     * case, hull elements are the convex hull points themselves.
7870     * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
7871     * to the right, and its Y axis pointing upwards.
7872     * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
7873     * output array is std::vector, the flag is ignored, and the output depends on the type of the
7874     * vector: std::vector&lt;int&gt; implies returnPoints=false, std::vector&lt;Point&gt; implies
7875     * returnPoints=true.
7876     *
7877     * <b>Note:</b> {@code points} and {@code hull} should be different arrays, inplace processing isn't supported.
7878     *
7879     * Check REF: tutorial_hull "the corresponding tutorial" for more details.
7880     *
7881     * useful links:
7882     *
7883     * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
7884     */
7885    public static void convexHull(MatOfPoint points, MatOfInt hull) {
7886        Mat points_mat = points;
7887        Mat hull_mat = hull;
7888        convexHull_2(points_mat.nativeObj, hull_mat.nativeObj);
7889    }
7890
7891
7892    //
7893    // C++:  void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects)
7894    //
7895
7896    /**
7897     * Finds the convexity defects of a contour.
7898     *
7899     * The figure below displays convexity defects of a hand contour:
7900     *
7901     * ![image](pics/defects.png)
7902     *
7903     * @param contour Input contour.
7904     * @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
7905     * points that make the hull.
7906     * @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
7907     * interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
7908     * (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
7909     * in the original contour of the convexity defect beginning, end and the farthest point, and
7910     * fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
7911     * farthest contour point and the hull. That is, to get the floating-point value of the depth will be
7912     * fixpt_depth/256.0.
7913     */
7914    public static void convexityDefects(MatOfPoint contour, MatOfInt convexhull, MatOfInt4 convexityDefects) {
7915        Mat contour_mat = contour;
7916        Mat convexhull_mat = convexhull;
7917        Mat convexityDefects_mat = convexityDefects;
7918        convexityDefects_0(contour_mat.nativeObj, convexhull_mat.nativeObj, convexityDefects_mat.nativeObj);
7919    }
7920
7921
7922    //
7923    // C++:  bool cv::isContourConvex(vector_Point contour)
7924    //
7925
7926    /**
7927     * Tests a contour convexity.
7928     *
7929     * The function tests whether the input contour is convex or not. The contour must be simple, that is,
7930     * without self-intersections. Otherwise, the function output is undefined.
7931     *
7932     * @param contour Input vector of 2D points, stored in std::vector&lt;&gt; or Mat
7933     * @return automatically generated
7934     */
7935    public static boolean isContourConvex(MatOfPoint contour) {
7936        Mat contour_mat = contour;
7937        return isContourConvex_0(contour_mat.nativeObj);
7938    }
7939
7940
7941    //
7942    // C++:  float cv::intersectConvexConvex(Mat p1, Mat p2, Mat& p12, bool handleNested = true)
7943    //
7944
7945    /**
7946     * Finds intersection of two convex polygons
7947     *
7948     * @param p1 First polygon
7949     * @param p2 Second polygon
7950     * @param p12 Output polygon describing the intersecting area
7951     * @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
7952     * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
7953     * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
7954     *
7955     * @return Absolute value of area of intersecting polygon
7956     *
7957     * <b>Note:</b> intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
7958     */
7959    public static float intersectConvexConvex(Mat p1, Mat p2, Mat p12, boolean handleNested) {
7960        return intersectConvexConvex_0(p1.nativeObj, p2.nativeObj, p12.nativeObj, handleNested);
7961    }
7962
7963    /**
7964     * Finds intersection of two convex polygons
7965     *
7966     * @param p1 First polygon
7967     * @param p2 Second polygon
7968     * @param p12 Output polygon describing the intersecting area
7969     * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
7970     * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
7971     *
7972     * @return Absolute value of area of intersecting polygon
7973     *
7974     * <b>Note:</b> intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
7975     */
7976    public static float intersectConvexConvex(Mat p1, Mat p2, Mat p12) {
7977        return intersectConvexConvex_1(p1.nativeObj, p2.nativeObj, p12.nativeObj);
7978    }
7979
7980
7981    //
7982    // C++:  RotatedRect cv::fitEllipse(vector_Point2f points)
7983    //
7984
7985    /**
7986     * Fits an ellipse around a set of 2D points.
7987     *
7988     * The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
7989     * all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by CITE: Fitzgibbon95
7990     * is used. Developer should keep in mind that it is possible that the returned
7991     * ellipse/rotatedRect data contains negative indices, due to the data points being close to the
7992     * border of the containing Mat element.
7993     *
7994     * @param points Input 2D point set, stored in std::vector&lt;&gt; or Mat
7995     * @return automatically generated
7996     */
7997    public static RotatedRect fitEllipse(MatOfPoint2f points) {
7998        Mat points_mat = points;
7999        return new RotatedRect(fitEllipse_0(points_mat.nativeObj));
8000    }
8001
8002
8003    //
8004    // C++:  RotatedRect cv::fitEllipseAMS(Mat points)
8005    //
8006
8007    /**
8008     * Fits an ellipse around a set of 2D points.
8009     *
8010     *  The function calculates the ellipse that fits a set of 2D points.
8011     *  It returns the rotated rectangle in which the ellipse is inscribed.
8012     *  The Approximate Mean Square (AMS) proposed by CITE: Taubin1991 is used.
8013     *
8014     *  For an ellipse, this basis set is \( \chi= \left(x^2, x y, y^2, x, y, 1\right) \),
8015     *  which is a set of six free coefficients \( A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \).
8016     *  However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \( (a,b) \),
8017     *  the position \( (x_0,y_0) \), and the orientation \( \theta \). This is because the basis set includes lines,
8018     *  quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
8019     *  If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
8020     *  The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
8021     *  by imposing the condition that \( A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \) where
8022     *  the matrices \( Dx \) and \( Dy \) are the partial derivatives of the design matrix \( D \) with
8023     *  respect to x and y. The matrices are formed row by row applying the following to
8024     *  each of the points in the set:
8025     *  \(align*}{
8026     *  D(i,:)&amp;=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &amp;
8027     *  D_x(i,:)&amp;=\left\{2 x_i,y_i,0,1,0,0\right\} &amp;
8028     *  D_y(i,:)&amp;=\left\{0,x_i,2 y_i,0,1,0\right\}
8029     *  \)
8030     *  The AMS method minimizes the cost function
8031     *  \(equation*}{
8032     *  \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T }
8033     *  \)
8034     *
8035     *  The minimum cost is found by solving the generalized eigenvalue problem.
8036     *
8037     *  \(equation*}{
8038     *  D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A
8039     *  \)
8040     *
8041     *  @param points Input 2D point set, stored in std::vector&lt;&gt; or Mat
8042     * @return automatically generated
8043     */
8044    public static RotatedRect fitEllipseAMS(Mat points) {
8045        return new RotatedRect(fitEllipseAMS_0(points.nativeObj));
8046    }
8047
8048
8049    //
8050    // C++:  RotatedRect cv::fitEllipseDirect(Mat points)
8051    //
8052
8053    /**
8054     * Fits an ellipse around a set of 2D points.
8055     *
8056     *  The function calculates the ellipse that fits a set of 2D points.
8057     *  It returns the rotated rectangle in which the ellipse is inscribed.
8058     *  The Direct least square (Direct) method by CITE: Fitzgibbon1999 is used.
8059     *
8060     *  For an ellipse, this basis set is \( \chi= \left(x^2, x y, y^2, x, y, 1\right) \),
8061     *  which is a set of six free coefficients \( A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \).
8062     *  However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \( (a,b) \),
8063     *  the position \( (x_0,y_0) \), and the orientation \( \theta \). This is because the basis set includes lines,
8064     *  quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
8065     *  The Direct method confines the fit to ellipses by ensuring that \( 4 A_{xx} A_{yy}- A_{xy}^2 &gt; 0 \).
8066     *  The condition imposed is that \( 4 A_{xx} A_{yy}- A_{xy}^2=1 \) which satisfies the inequality
8067     *  and as the coefficients can be arbitrarily scaled is not overly restrictive.
8068     *
8069     *  \(equation*}{
8070     *  \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
8071     *  0 &amp; 0  &amp; 2  &amp; 0  &amp; 0  &amp;  0  \\
8072     *  0 &amp; -1  &amp; 0  &amp; 0  &amp; 0  &amp;  0 \\
8073     *  2 &amp; 0  &amp; 0  &amp; 0  &amp; 0  &amp;  0 \\
8074     *  0 &amp; 0  &amp; 0  &amp; 0  &amp; 0  &amp;  0 \\
8075     *  0 &amp; 0  &amp; 0  &amp; 0  &amp; 0  &amp;  0 \\
8076     *  0 &amp; 0  &amp; 0  &amp; 0  &amp; 0  &amp;  0
8077     *  \end{matrix} \right)
8078     *  \)
8079     *
8080     *  The minimum cost is found by solving the generalized eigenvalue problem.
8081     *
8082     *  \(equation*}{
8083     *  D^T D A = \lambda  \left( C\right) A
8084     *  \)
8085     *
8086     *  The system produces only one positive eigenvalue \( \lambda\) which is chosen as the solution
8087     *  with its eigenvector \(\mathbf{u}\). These are used to find the coefficients
8088     *
8089     *  \(equation*}{
8090     *  A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u}
8091     *  \)
8092     *  The scaling factor guarantees that  \(A^T C A =1\).
8093     *
8094     *  @param points Input 2D point set, stored in std::vector&lt;&gt; or Mat
8095     * @return automatically generated
8096     */
8097    public static RotatedRect fitEllipseDirect(Mat points) {
8098        return new RotatedRect(fitEllipseDirect_0(points.nativeObj));
8099    }
8100
8101
8102    //
8103    // C++:  void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps)
8104    //
8105
8106    /**
8107     * Fits a line to a 2D or 3D point set.
8108     *
8109     * The function fitLine fits a line to a 2D or 3D point set by minimizing \(\sum_i \rho(r_i)\) where
8110     * \(r_i\) is a distance between the \(i^{th}\) point, the line and \(\rho(r)\) is a distance function, one
8111     * of the following:
8112     * <ul>
8113     *   <li>
8114     *   DIST_L2
8115     * \(\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\)
8116     *   </li>
8117     *   <li>
8118     *  DIST_L1
8119     * \(\rho (r) = r\)
8120     *   </li>
8121     *   <li>
8122     *  DIST_L12
8123     * \(\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\)
8124     *   </li>
8125     *   <li>
8126     *  DIST_FAIR
8127     * \(\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\)
8128     *   </li>
8129     *   <li>
8130     *  DIST_WELSCH
8131     * \(\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\)
8132     *   </li>
8133     *   <li>
8134     *  DIST_HUBER
8135     * \(\rho (r) =  \fork{r^2/2}{if \(r &lt; C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\)
8136     *   </li>
8137     * </ul>
8138     *
8139     * The algorithm is based on the M-estimator ( &lt;http://en.wikipedia.org/wiki/M-estimator&gt; ) technique
8140     * that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
8141     * weights \(w_i\) are adjusted to be inversely proportional to \(\rho(r_i)\) .
8142     *
8143     * @param points Input vector of 2D or 3D points, stored in std::vector&lt;&gt; or Mat.
8144     * @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
8145     * (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
8146     * (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
8147     * Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
8148     * and (x0, y0, z0) is a point on the line.
8149     * @param distType Distance used by the M-estimator, see #DistanceTypes
8150     * @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
8151     * is chosen.
8152     * @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
8153     * @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
8154     */
8155    public static void fitLine(Mat points, Mat line, int distType, double param, double reps, double aeps) {
8156        fitLine_0(points.nativeObj, line.nativeObj, distType, param, reps, aeps);
8157    }
8158
8159
8160    //
8161    // C++:  double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist)
8162    //
8163
8164    /**
8165     * Performs a point-in-contour test.
8166     *
8167     * The function determines whether the point is inside a contour, outside, or lies on an edge (or
8168     * coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
8169     * value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
8170     * Otherwise, the return value is a signed distance between the point and the nearest contour edge.
8171     *
8172     * See below a sample output of the function where each image pixel is tested against the contour:
8173     *
8174     * ![sample output](pics/pointpolygon.png)
8175     *
8176     * @param contour Input contour.
8177     * @param pt Point tested against the contour.
8178     * @param measureDist If true, the function estimates the signed distance from the point to the
8179     * nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
8180     * @return automatically generated
8181     */
8182    public static double pointPolygonTest(MatOfPoint2f contour, Point pt, boolean measureDist) {
8183        Mat contour_mat = contour;
8184        return pointPolygonTest_0(contour_mat.nativeObj, pt.x, pt.y, measureDist);
8185    }
8186
8187
8188    //
8189    // C++:  int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion)
8190    //
8191
8192    /**
8193     * Finds out if there is any intersection between two rotated rectangles.
8194     *
8195     * If there is then the vertices of the intersecting region are returned as well.
8196     *
8197     * Below are some examples of intersection configurations. The hatched pattern indicates the
8198     * intersecting region and the red vertices are returned by the function.
8199     *
8200     * ![intersection examples](pics/intersection.png)
8201     *
8202     * @param rect1 First rectangle
8203     * @param rect2 Second rectangle
8204     * @param intersectingRegion The output array of the vertices of the intersecting region. It returns
8205     * at most 8 vertices. Stored as std::vector&lt;cv::Point2f&gt; or cv::Mat as Mx1 of type CV_32FC2.
8206     * @return One of #RectanglesIntersectTypes
8207     */
8208    public static int rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat intersectingRegion) {
8209        return rotatedRectangleIntersection_0(rect1.center.x, rect1.center.y, rect1.size.width, rect1.size.height, rect1.angle, rect2.center.x, rect2.center.y, rect2.size.width, rect2.size.height, rect2.angle, intersectingRegion.nativeObj);
8210    }
8211
8212
8213    //
8214    // C++:  Ptr_GeneralizedHoughBallard cv::createGeneralizedHoughBallard()
8215    //
8216
8217    /**
8218     * Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
8219     * @return automatically generated
8220     */
8221    public static GeneralizedHoughBallard createGeneralizedHoughBallard() {
8222        return GeneralizedHoughBallard.__fromPtr__(createGeneralizedHoughBallard_0());
8223    }
8224
8225
8226    //
8227    // C++:  Ptr_GeneralizedHoughGuil cv::createGeneralizedHoughGuil()
8228    //
8229
8230    /**
8231     * Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
8232     * @return automatically generated
8233     */
8234    public static GeneralizedHoughGuil createGeneralizedHoughGuil() {
8235        return GeneralizedHoughGuil.__fromPtr__(createGeneralizedHoughGuil_0());
8236    }
8237
8238
8239    //
8240    // C++:  void cv::applyColorMap(Mat src, Mat& dst, int colormap)
8241    //
8242
8243    /**
8244     * Applies a GNU Octave/MATLAB equivalent colormap on a given image.
8245     *
8246     * @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
8247     * @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
8248     * @param colormap The colormap to apply, see #ColormapTypes
8249     */
8250    public static void applyColorMap(Mat src, Mat dst, int colormap) {
8251        applyColorMap_0(src.nativeObj, dst.nativeObj, colormap);
8252    }
8253
8254
8255    //
8256    // C++:  void cv::applyColorMap(Mat src, Mat& dst, Mat userColor)
8257    //
8258
8259    /**
8260     * Applies a user colormap on a given image.
8261     *
8262     * @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
8263     * @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
8264     * @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
8265     */
8266    public static void applyColorMap(Mat src, Mat dst, Mat userColor) {
8267        applyColorMap_1(src.nativeObj, dst.nativeObj, userColor.nativeObj);
8268    }
8269
8270
8271    //
8272    // C++:  void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
8273    //
8274
8275    /**
8276     * Draws a line segment connecting two points.
8277     *
8278     * The function line draws the line segment between pt1 and pt2 points in the image. The line is
8279     * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
8280     * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
8281     * lines are drawn using Gaussian filtering.
8282     *
8283     * @param img Image.
8284     * @param pt1 First point of the line segment.
8285     * @param pt2 Second point of the line segment.
8286     * @param color Line color.
8287     * @param thickness Line thickness.
8288     * @param lineType Type of the line. See #LineTypes.
8289     * @param shift Number of fractional bits in the point coordinates.
8290     */
8291    public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) {
8292        line_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
8293    }
8294
8295    /**
8296     * Draws a line segment connecting two points.
8297     *
8298     * The function line draws the line segment between pt1 and pt2 points in the image. The line is
8299     * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
8300     * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
8301     * lines are drawn using Gaussian filtering.
8302     *
8303     * @param img Image.
8304     * @param pt1 First point of the line segment.
8305     * @param pt2 Second point of the line segment.
8306     * @param color Line color.
8307     * @param thickness Line thickness.
8308     * @param lineType Type of the line. See #LineTypes.
8309     */
8310    public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) {
8311        line_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8312    }
8313
8314    /**
8315     * Draws a line segment connecting two points.
8316     *
8317     * The function line draws the line segment between pt1 and pt2 points in the image. The line is
8318     * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
8319     * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
8320     * lines are drawn using Gaussian filtering.
8321     *
8322     * @param img Image.
8323     * @param pt1 First point of the line segment.
8324     * @param pt2 Second point of the line segment.
8325     * @param color Line color.
8326     * @param thickness Line thickness.
8327     */
8328    public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness) {
8329        line_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8330    }
8331
8332    /**
8333     * Draws a line segment connecting two points.
8334     *
8335     * The function line draws the line segment between pt1 and pt2 points in the image. The line is
8336     * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
8337     * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
8338     * lines are drawn using Gaussian filtering.
8339     *
8340     * @param img Image.
8341     * @param pt1 First point of the line segment.
8342     * @param pt2 Second point of the line segment.
8343     * @param color Line color.
8344     */
8345    public static void line(Mat img, Point pt1, Point pt2, Scalar color) {
8346        line_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);
8347    }
8348
8349
8350    //
8351    // C++:  void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1)
8352    //
8353
8354    /**
8355     * Draws an arrow segment pointing from the first point to the second one.
8356     *
8357     * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
8358     *
8359     * @param img Image.
8360     * @param pt1 The point the arrow starts from.
8361     * @param pt2 The point the arrow points to.
8362     * @param color Line color.
8363     * @param thickness Line thickness.
8364     * @param line_type Type of the line. See #LineTypes
8365     * @param shift Number of fractional bits in the point coordinates.
8366     * @param tipLength The length of the arrow tip in relation to the arrow length
8367     */
8368    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift, double tipLength) {
8369        arrowedLine_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift, tipLength);
8370    }
8371
8372    /**
8373     * Draws an arrow segment pointing from the first point to the second one.
8374     *
8375     * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
8376     *
8377     * @param img Image.
8378     * @param pt1 The point the arrow starts from.
8379     * @param pt2 The point the arrow points to.
8380     * @param color Line color.
8381     * @param thickness Line thickness.
8382     * @param line_type Type of the line. See #LineTypes
8383     * @param shift Number of fractional bits in the point coordinates.
8384     */
8385    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift) {
8386        arrowedLine_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift);
8387    }
8388
8389    /**
8390     * Draws an arrow segment pointing from the first point to the second one.
8391     *
8392     * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
8393     *
8394     * @param img Image.
8395     * @param pt1 The point the arrow starts from.
8396     * @param pt2 The point the arrow points to.
8397     * @param color Line color.
8398     * @param thickness Line thickness.
8399     * @param line_type Type of the line. See #LineTypes
8400     */
8401    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type) {
8402        arrowedLine_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type);
8403    }
8404
8405    /**
8406     * Draws an arrow segment pointing from the first point to the second one.
8407     *
8408     * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
8409     *
8410     * @param img Image.
8411     * @param pt1 The point the arrow starts from.
8412     * @param pt2 The point the arrow points to.
8413     * @param color Line color.
8414     * @param thickness Line thickness.
8415     */
8416    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness) {
8417        arrowedLine_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8418    }
8419
8420    /**
8421     * Draws an arrow segment pointing from the first point to the second one.
8422     *
8423     * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
8424     *
8425     * @param img Image.
8426     * @param pt1 The point the arrow starts from.
8427     * @param pt2 The point the arrow points to.
8428     * @param color Line color.
8429     */
8430    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color) {
8431        arrowedLine_4(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);
8432    }
8433
8434
8435    //
8436    // C++:  void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
8437    //
8438
8439    /**
8440     * Draws a simple, thick, or filled up-right rectangle.
8441     *
8442     * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
8443     * are pt1 and pt2.
8444     *
8445     * @param img Image.
8446     * @param pt1 Vertex of the rectangle.
8447     * @param pt2 Vertex of the rectangle opposite to pt1 .
8448     * @param color Rectangle color or brightness (grayscale image).
8449     * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
8450     * mean that the function has to draw a filled rectangle.
8451     * @param lineType Type of the line. See #LineTypes
8452     * @param shift Number of fractional bits in the point coordinates.
8453     */
8454    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) {
8455        rectangle_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
8456    }
8457
8458    /**
8459     * Draws a simple, thick, or filled up-right rectangle.
8460     *
8461     * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
8462     * are pt1 and pt2.
8463     *
8464     * @param img Image.
8465     * @param pt1 Vertex of the rectangle.
8466     * @param pt2 Vertex of the rectangle opposite to pt1 .
8467     * @param color Rectangle color or brightness (grayscale image).
8468     * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
8469     * mean that the function has to draw a filled rectangle.
8470     * @param lineType Type of the line. See #LineTypes
8471     */
8472    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) {
8473        rectangle_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8474    }
8475
8476    /**
8477     * Draws a simple, thick, or filled up-right rectangle.
8478     *
8479     * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
8480     * are pt1 and pt2.
8481     *
8482     * @param img Image.
8483     * @param pt1 Vertex of the rectangle.
8484     * @param pt2 Vertex of the rectangle opposite to pt1 .
8485     * @param color Rectangle color or brightness (grayscale image).
8486     * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
8487     * mean that the function has to draw a filled rectangle.
8488     */
8489    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness) {
8490        rectangle_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8491    }
8492
8493    /**
8494     * Draws a simple, thick, or filled up-right rectangle.
8495     *
8496     * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
8497     * are pt1 and pt2.
8498     *
8499     * @param img Image.
8500     * @param pt1 Vertex of the rectangle.
8501     * @param pt2 Vertex of the rectangle opposite to pt1 .
8502     * @param color Rectangle color or brightness (grayscale image).
8503     * mean that the function has to draw a filled rectangle.
8504     */
8505    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color) {
8506        rectangle_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);
8507    }
8508
8509
8510    //
8511    // C++:  void cv::rectangle(Mat& img, Rect rec, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
8512    //
8513
8514    /**
8515     *
8516     *
8517     * use {@code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and
8518     * r.br()-Point(1,1)` are opposite corners
8519     * @param img automatically generated
8520     * @param rec automatically generated
8521     * @param color automatically generated
8522     * @param thickness automatically generated
8523     * @param lineType automatically generated
8524     * @param shift automatically generated
8525     */
8526    public static void rectangle(Mat img, Rect rec, Scalar color, int thickness, int lineType, int shift) {
8527        rectangle_4(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
8528    }
8529
8530    /**
8531     *
8532     *
8533     * use {@code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and
8534     * r.br()-Point(1,1)` are opposite corners
8535     * @param img automatically generated
8536     * @param rec automatically generated
8537     * @param color automatically generated
8538     * @param thickness automatically generated
8539     * @param lineType automatically generated
8540     */
8541    public static void rectangle(Mat img, Rect rec, Scalar color, int thickness, int lineType) {
8542        rectangle_5(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8543    }
8544
8545    /**
8546     *
8547     *
8548     * use {@code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and
8549     * r.br()-Point(1,1)` are opposite corners
8550     * @param img automatically generated
8551     * @param rec automatically generated
8552     * @param color automatically generated
8553     * @param thickness automatically generated
8554     */
8555    public static void rectangle(Mat img, Rect rec, Scalar color, int thickness) {
8556        rectangle_6(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8557    }
8558
8559    /**
8560     *
8561     *
8562     * use {@code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and
8563     * r.br()-Point(1,1)` are opposite corners
8564     * @param img automatically generated
8565     * @param rec automatically generated
8566     * @param color automatically generated
8567     */
8568    public static void rectangle(Mat img, Rect rec, Scalar color) {
8569        rectangle_7(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3]);
8570    }
8571
8572
8573    //
8574    // C++:  void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
8575    //
8576
8577    /**
8578     * Draws a circle.
8579     *
8580     * The function cv::circle draws a simple or filled circle with a given center and radius.
8581     * @param img Image where the circle is drawn.
8582     * @param center Center of the circle.
8583     * @param radius Radius of the circle.
8584     * @param color Circle color.
8585     * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
8586     * mean that a filled circle is to be drawn.
8587     * @param lineType Type of the circle boundary. See #LineTypes
8588     * @param shift Number of fractional bits in the coordinates of the center and in the radius value.
8589     */
8590    public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType, int shift) {
8591        circle_0(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
8592    }
8593
8594    /**
8595     * Draws a circle.
8596     *
8597     * The function cv::circle draws a simple or filled circle with a given center and radius.
8598     * @param img Image where the circle is drawn.
8599     * @param center Center of the circle.
8600     * @param radius Radius of the circle.
8601     * @param color Circle color.
8602     * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
8603     * mean that a filled circle is to be drawn.
8604     * @param lineType Type of the circle boundary. See #LineTypes
8605     */
8606    public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType) {
8607        circle_1(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8608    }
8609
8610    /**
8611     * Draws a circle.
8612     *
8613     * The function cv::circle draws a simple or filled circle with a given center and radius.
8614     * @param img Image where the circle is drawn.
8615     * @param center Center of the circle.
8616     * @param radius Radius of the circle.
8617     * @param color Circle color.
8618     * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
8619     * mean that a filled circle is to be drawn.
8620     */
8621    public static void circle(Mat img, Point center, int radius, Scalar color, int thickness) {
8622        circle_2(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8623    }
8624
8625    /**
8626     * Draws a circle.
8627     *
8628     * The function cv::circle draws a simple or filled circle with a given center and radius.
8629     * @param img Image where the circle is drawn.
8630     * @param center Center of the circle.
8631     * @param radius Radius of the circle.
8632     * @param color Circle color.
8633     * mean that a filled circle is to be drawn.
8634     */
8635    public static void circle(Mat img, Point center, int radius, Scalar color) {
8636        circle_3(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3]);
8637    }
8638
8639
8640    //
8641    // C++:  void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
8642    //
8643
8644    /**
8645     * Draws a simple or thick elliptic arc or fills an ellipse sector.
8646     *
8647     * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
8648     * arc, or a filled ellipse sector. The drawing code uses general parametric form.
8649     * A piecewise-linear curve is used to approximate the elliptic arc
8650     * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
8651     * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
8652     * variant of the function and want to draw the whole ellipse, not an arc, pass {@code startAngle=0} and
8653     * {@code endAngle=360}. If {@code startAngle} is greater than {@code endAngle}, they are swapped. The figure below explains
8654     * the meaning of the parameters to draw the blue arc.
8655     *
8656     * ![Parameters of Elliptic Arc](pics/ellipse.svg)
8657     *
8658     * @param img Image.
8659     * @param center Center of the ellipse.
8660     * @param axes Half of the size of the ellipse main axes.
8661     * @param angle Ellipse rotation angle in degrees.
8662     * @param startAngle Starting angle of the elliptic arc in degrees.
8663     * @param endAngle Ending angle of the elliptic arc in degrees.
8664     * @param color Ellipse color.
8665     * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
8666     * a filled ellipse sector is to be drawn.
8667     * @param lineType Type of the ellipse boundary. See #LineTypes
8668     * @param shift Number of fractional bits in the coordinates of the center and values of axes.
8669     */
8670    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType, int shift) {
8671        ellipse_0(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
8672    }
8673
8674    /**
8675     * Draws a simple or thick elliptic arc or fills an ellipse sector.
8676     *
8677     * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
8678     * arc, or a filled ellipse sector. The drawing code uses general parametric form.
8679     * A piecewise-linear curve is used to approximate the elliptic arc
8680     * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
8681     * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
8682     * variant of the function and want to draw the whole ellipse, not an arc, pass {@code startAngle=0} and
8683     * {@code endAngle=360}. If {@code startAngle} is greater than {@code endAngle}, they are swapped. The figure below explains
8684     * the meaning of the parameters to draw the blue arc.
8685     *
8686     * ![Parameters of Elliptic Arc](pics/ellipse.svg)
8687     *
8688     * @param img Image.
8689     * @param center Center of the ellipse.
8690     * @param axes Half of the size of the ellipse main axes.
8691     * @param angle Ellipse rotation angle in degrees.
8692     * @param startAngle Starting angle of the elliptic arc in degrees.
8693     * @param endAngle Ending angle of the elliptic arc in degrees.
8694     * @param color Ellipse color.
8695     * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
8696     * a filled ellipse sector is to be drawn.
8697     * @param lineType Type of the ellipse boundary. See #LineTypes
8698     */
8699    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType) {
8700        ellipse_1(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8701    }
8702
8703    /**
8704     * Draws a simple or thick elliptic arc or fills an ellipse sector.
8705     *
8706     * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
8707     * arc, or a filled ellipse sector. The drawing code uses general parametric form.
8708     * A piecewise-linear curve is used to approximate the elliptic arc
8709     * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
8710     * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
8711     * variant of the function and want to draw the whole ellipse, not an arc, pass {@code startAngle=0} and
8712     * {@code endAngle=360}. If {@code startAngle} is greater than {@code endAngle}, they are swapped. The figure below explains
8713     * the meaning of the parameters to draw the blue arc.
8714     *
8715     * ![Parameters of Elliptic Arc](pics/ellipse.svg)
8716     *
8717     * @param img Image.
8718     * @param center Center of the ellipse.
8719     * @param axes Half of the size of the ellipse main axes.
8720     * @param angle Ellipse rotation angle in degrees.
8721     * @param startAngle Starting angle of the elliptic arc in degrees.
8722     * @param endAngle Ending angle of the elliptic arc in degrees.
8723     * @param color Ellipse color.
8724     * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
8725     * a filled ellipse sector is to be drawn.
8726     */
8727    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness) {
8728        ellipse_2(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8729    }
8730
8731    /**
8732     * Draws a simple or thick elliptic arc or fills an ellipse sector.
8733     *
8734     * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
8735     * arc, or a filled ellipse sector. The drawing code uses general parametric form.
8736     * A piecewise-linear curve is used to approximate the elliptic arc
8737     * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
8738     * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
8739     * variant of the function and want to draw the whole ellipse, not an arc, pass {@code startAngle=0} and
8740     * {@code endAngle=360}. If {@code startAngle} is greater than {@code endAngle}, they are swapped. The figure below explains
8741     * the meaning of the parameters to draw the blue arc.
8742     *
8743     * ![Parameters of Elliptic Arc](pics/ellipse.svg)
8744     *
8745     * @param img Image.
8746     * @param center Center of the ellipse.
8747     * @param axes Half of the size of the ellipse main axes.
8748     * @param angle Ellipse rotation angle in degrees.
8749     * @param startAngle Starting angle of the elliptic arc in degrees.
8750     * @param endAngle Ending angle of the elliptic arc in degrees.
8751     * @param color Ellipse color.
8752     * a filled ellipse sector is to be drawn.
8753     */
8754    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color) {
8755        ellipse_3(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3]);
8756    }
8757
8758
8759    //
8760    // C++:  void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8)
8761    //
8762
8763    /**
8764     *
8765     * @param img Image.
8766     * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
8767     * an ellipse inscribed in the rotated rectangle.
8768     * @param color Ellipse color.
8769     * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
8770     * a filled ellipse sector is to be drawn.
8771     * @param lineType Type of the ellipse boundary. See #LineTypes
8772     */
8773    public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness, int lineType) {
8774        ellipse_4(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
8775    }
8776
8777    /**
8778     *
8779     * @param img Image.
8780     * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
8781     * an ellipse inscribed in the rotated rectangle.
8782     * @param color Ellipse color.
8783     * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
8784     * a filled ellipse sector is to be drawn.
8785     */
8786    public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness) {
8787        ellipse_5(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
8788    }
8789
8790    /**
8791     *
8792     * @param img Image.
8793     * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
8794     * an ellipse inscribed in the rotated rectangle.
8795     * @param color Ellipse color.
8796     * a filled ellipse sector is to be drawn.
8797     */
8798    public static void ellipse(Mat img, RotatedRect box, Scalar color) {
8799        ellipse_6(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3]);
8800    }
8801
8802
8803    //
8804    // C++:  void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8)
8805    //
8806
8807    /**
8808     * Draws a marker on a predefined position in an image.
8809     *
8810     * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
8811     * marker types are supported, see #MarkerTypes for more information.
8812     *
8813     * @param img Image.
8814     * @param position The point where the crosshair is positioned.
8815     * @param color Line color.
8816     * @param markerType The specific type of marker you want to use, see #MarkerTypes
8817     * @param thickness Line thickness.
8818     * @param line_type Type of the line, See #LineTypes
8819     * @param markerSize The length of the marker axis [default = 20 pixels]
8820     */
8821    public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness, int line_type) {
8822        drawMarker_0(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness, line_type);
8823    }
8824
8825    /**
8826     * Draws a marker on a predefined position in an image.
8827     *
8828     * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
8829     * marker types are supported, see #MarkerTypes for more information.
8830     *
8831     * @param img Image.
8832     * @param position The point where the crosshair is positioned.
8833     * @param color Line color.
8834     * @param markerType The specific type of marker you want to use, see #MarkerTypes
8835     * @param thickness Line thickness.
8836     * @param markerSize The length of the marker axis [default = 20 pixels]
8837     */
8838    public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness) {
8839        drawMarker_1(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness);
8840    }
8841
8842    /**
8843     * Draws a marker on a predefined position in an image.
8844     *
8845     * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
8846     * marker types are supported, see #MarkerTypes for more information.
8847     *
8848     * @param img Image.
8849     * @param position The point where the crosshair is positioned.
8850     * @param color Line color.
8851     * @param markerType The specific type of marker you want to use, see #MarkerTypes
8852     * @param markerSize The length of the marker axis [default = 20 pixels]
8853     */
8854    public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize) {
8855        drawMarker_2(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize);
8856    }
8857
8858    /**
8859     * Draws a marker on a predefined position in an image.
8860     *
8861     * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
8862     * marker types are supported, see #MarkerTypes for more information.
8863     *
8864     * @param img Image.
8865     * @param position The point where the crosshair is positioned.
8866     * @param color Line color.
8867     * @param markerType The specific type of marker you want to use, see #MarkerTypes
8868     */
8869    public static void drawMarker(Mat img, Point position, Scalar color, int markerType) {
8870        drawMarker_3(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType);
8871    }
8872
8873    /**
8874     * Draws a marker on a predefined position in an image.
8875     *
8876     * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
8877     * marker types are supported, see #MarkerTypes for more information.
8878     *
8879     * @param img Image.
8880     * @param position The point where the crosshair is positioned.
8881     * @param color Line color.
8882     */
8883    public static void drawMarker(Mat img, Point position, Scalar color) {
8884        drawMarker_4(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3]);
8885    }
8886
8887
8888    //
8889    // C++:  void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0)
8890    //
8891
8892    /**
8893     * Fills a convex polygon.
8894     *
8895     * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
8896     * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
8897     * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
8898     * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
8899     *
8900     * @param img Image.
8901     * @param points Polygon vertices.
8902     * @param color Polygon color.
8903     * @param lineType Type of the polygon boundaries. See #LineTypes
8904     * @param shift Number of fractional bits in the vertex coordinates.
8905     */
8906    public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType, int shift) {
8907        Mat points_mat = points;
8908        fillConvexPoly_0(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift);
8909    }
8910
8911    /**
8912     * Fills a convex polygon.
8913     *
8914     * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
8915     * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
8916     * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
8917     * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
8918     *
8919     * @param img Image.
8920     * @param points Polygon vertices.
8921     * @param color Polygon color.
8922     * @param lineType Type of the polygon boundaries. See #LineTypes
8923     */
8924    public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType) {
8925        Mat points_mat = points;
8926        fillConvexPoly_1(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType);
8927    }
8928
8929    /**
8930     * Fills a convex polygon.
8931     *
8932     * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
8933     * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
8934     * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
8935     * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
8936     *
8937     * @param img Image.
8938     * @param points Polygon vertices.
8939     * @param color Polygon color.
8940     */
8941    public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color) {
8942        Mat points_mat = points;
8943        fillConvexPoly_2(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]);
8944    }
8945
8946
8947    //
8948    // C++:  void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point())
8949    //
8950
8951    /**
8952     * Fills the area bounded by one or more polygons.
8953     *
8954     * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
8955     * complex areas, for example, areas with holes, contours with self-intersections (some of their
8956     * parts), and so forth.
8957     *
8958     * @param img Image.
8959     * @param pts Array of polygons where each polygon is represented as an array of points.
8960     * @param color Polygon color.
8961     * @param lineType Type of the polygon boundaries. See #LineTypes
8962     * @param shift Number of fractional bits in the vertex coordinates.
8963     * @param offset Optional offset of all points of the contours.
8964     */
8965    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color, int lineType, int shift, Point offset) {
8966        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
8967        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
8968        fillPoly_0(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift, offset.x, offset.y);
8969    }
8970
8971    /**
8972     * Fills the area bounded by one or more polygons.
8973     *
8974     * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
8975     * complex areas, for example, areas with holes, contours with self-intersections (some of their
8976     * parts), and so forth.
8977     *
8978     * @param img Image.
8979     * @param pts Array of polygons where each polygon is represented as an array of points.
8980     * @param color Polygon color.
8981     * @param lineType Type of the polygon boundaries. See #LineTypes
8982     * @param shift Number of fractional bits in the vertex coordinates.
8983     */
8984    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color, int lineType, int shift) {
8985        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
8986        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
8987        fillPoly_1(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift);
8988    }
8989
8990    /**
8991     * Fills the area bounded by one or more polygons.
8992     *
8993     * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
8994     * complex areas, for example, areas with holes, contours with self-intersections (some of their
8995     * parts), and so forth.
8996     *
8997     * @param img Image.
8998     * @param pts Array of polygons where each polygon is represented as an array of points.
8999     * @param color Polygon color.
9000     * @param lineType Type of the polygon boundaries. See #LineTypes
9001     */
9002    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color, int lineType) {
9003        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9004        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9005        fillPoly_2(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType);
9006    }
9007
9008    /**
9009     * Fills the area bounded by one or more polygons.
9010     *
9011     * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
9012     * complex areas, for example, areas with holes, contours with self-intersections (some of their
9013     * parts), and so forth.
9014     *
9015     * @param img Image.
9016     * @param pts Array of polygons where each polygon is represented as an array of points.
9017     * @param color Polygon color.
9018     */
9019    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color) {
9020        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9021        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9022        fillPoly_3(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]);
9023    }
9024
9025
9026    //
9027    // C++:  void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
9028    //
9029
9030    /**
9031     * Draws several polygonal curves.
9032     *
9033     * @param img Image.
9034     * @param pts Array of polygonal curves.
9035     * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
9036     * the function draws a line from the last vertex of each curve to its first vertex.
9037     * @param color Polyline color.
9038     * @param thickness Thickness of the polyline edges.
9039     * @param lineType Type of the line segments. See #LineTypes
9040     * @param shift Number of fractional bits in the vertex coordinates.
9041     *
9042     * The function cv::polylines draws one or more polygonal curves.
9043     */
9044    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color, int thickness, int lineType, int shift) {
9045        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9046        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9047        polylines_0(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
9048    }
9049
9050    /**
9051     * Draws several polygonal curves.
9052     *
9053     * @param img Image.
9054     * @param pts Array of polygonal curves.
9055     * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
9056     * the function draws a line from the last vertex of each curve to its first vertex.
9057     * @param color Polyline color.
9058     * @param thickness Thickness of the polyline edges.
9059     * @param lineType Type of the line segments. See #LineTypes
9060     *
9061     * The function cv::polylines draws one or more polygonal curves.
9062     */
9063    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color, int thickness, int lineType) {
9064        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9065        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9066        polylines_1(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
9067    }
9068
9069    /**
9070     * Draws several polygonal curves.
9071     *
9072     * @param img Image.
9073     * @param pts Array of polygonal curves.
9074     * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
9075     * the function draws a line from the last vertex of each curve to its first vertex.
9076     * @param color Polyline color.
9077     * @param thickness Thickness of the polyline edges.
9078     *
9079     * The function cv::polylines draws one or more polygonal curves.
9080     */
9081    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color, int thickness) {
9082        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9083        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9084        polylines_2(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
9085    }
9086
9087    /**
9088     * Draws several polygonal curves.
9089     *
9090     * @param img Image.
9091     * @param pts Array of polygonal curves.
9092     * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
9093     * the function draws a line from the last vertex of each curve to its first vertex.
9094     * @param color Polyline color.
9095     *
9096     * The function cv::polylines draws one or more polygonal curves.
9097     */
9098    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color) {
9099        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
9100        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
9101        polylines_3(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3]);
9102    }
9103
9104
9105    //
9106    // C++:  void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point())
9107    //
9108
9109    /**
9110     * Draws contours outlines or filled contours.
9111     *
9112     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9113     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9114     * connected components from the binary image and label them: :
9115     * INCLUDE: snippets/imgproc_drawContours.cpp
9116     *
9117     * @param image Destination image.
9118     * @param contours All the input contours. Each contour is stored as a point vector.
9119     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9120     * @param color Color of the contours.
9121     * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
9122     * thickness=#FILLED ), the contour interiors are drawn.
9123     * @param lineType Line connectivity. See #LineTypes
9124     * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
9125     * some of the contours (see maxLevel ).
9126     * @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
9127     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9128     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9129     * parameter is only taken into account when there is hierarchy available.
9130     * @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
9131     * \(\texttt{offset}=(dx,dy)\) .
9132     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9133     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9134     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9135     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9136     * of contours, or iterate over the collection using contourIdx parameter.
9137     */
9138    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel, Point offset) {
9139        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9140        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9141        drawContours_0(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel, offset.x, offset.y);
9142    }
9143
9144    /**
9145     * Draws contours outlines or filled contours.
9146     *
9147     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9148     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9149     * connected components from the binary image and label them: :
9150     * INCLUDE: snippets/imgproc_drawContours.cpp
9151     *
9152     * @param image Destination image.
9153     * @param contours All the input contours. Each contour is stored as a point vector.
9154     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9155     * @param color Color of the contours.
9156     * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
9157     * thickness=#FILLED ), the contour interiors are drawn.
9158     * @param lineType Line connectivity. See #LineTypes
9159     * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
9160     * some of the contours (see maxLevel ).
9161     * @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
9162     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9163     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9164     * parameter is only taken into account when there is hierarchy available.
9165     * \(\texttt{offset}=(dx,dy)\) .
9166     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9167     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9168     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9169     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9170     * of contours, or iterate over the collection using contourIdx parameter.
9171     */
9172    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel) {
9173        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9174        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9175        drawContours_1(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel);
9176    }
9177
9178    /**
9179     * Draws contours outlines or filled contours.
9180     *
9181     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9182     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9183     * connected components from the binary image and label them: :
9184     * INCLUDE: snippets/imgproc_drawContours.cpp
9185     *
9186     * @param image Destination image.
9187     * @param contours All the input contours. Each contour is stored as a point vector.
9188     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9189     * @param color Color of the contours.
9190     * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
9191     * thickness=#FILLED ), the contour interiors are drawn.
9192     * @param lineType Line connectivity. See #LineTypes
9193     * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
9194     * some of the contours (see maxLevel ).
9195     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9196     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9197     * parameter is only taken into account when there is hierarchy available.
9198     * \(\texttt{offset}=(dx,dy)\) .
9199     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9200     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9201     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9202     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9203     * of contours, or iterate over the collection using contourIdx parameter.
9204     */
9205    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy) {
9206        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9207        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9208        drawContours_2(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj);
9209    }
9210
9211    /**
9212     * Draws contours outlines or filled contours.
9213     *
9214     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9215     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9216     * connected components from the binary image and label them: :
9217     * INCLUDE: snippets/imgproc_drawContours.cpp
9218     *
9219     * @param image Destination image.
9220     * @param contours All the input contours. Each contour is stored as a point vector.
9221     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9222     * @param color Color of the contours.
9223     * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
9224     * thickness=#FILLED ), the contour interiors are drawn.
9225     * @param lineType Line connectivity. See #LineTypes
9226     * some of the contours (see maxLevel ).
9227     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9228     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9229     * parameter is only taken into account when there is hierarchy available.
9230     * \(\texttt{offset}=(dx,dy)\) .
9231     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9232     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9233     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9234     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9235     * of contours, or iterate over the collection using contourIdx parameter.
9236     */
9237    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color, int thickness, int lineType) {
9238        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9239        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9240        drawContours_3(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
9241    }
9242
9243    /**
9244     * Draws contours outlines or filled contours.
9245     *
9246     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9247     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9248     * connected components from the binary image and label them: :
9249     * INCLUDE: snippets/imgproc_drawContours.cpp
9250     *
9251     * @param image Destination image.
9252     * @param contours All the input contours. Each contour is stored as a point vector.
9253     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9254     * @param color Color of the contours.
9255     * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
9256     * thickness=#FILLED ), the contour interiors are drawn.
9257     * some of the contours (see maxLevel ).
9258     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9259     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9260     * parameter is only taken into account when there is hierarchy available.
9261     * \(\texttt{offset}=(dx,dy)\) .
9262     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9263     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9264     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9265     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9266     * of contours, or iterate over the collection using contourIdx parameter.
9267     */
9268    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color, int thickness) {
9269        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9270        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9271        drawContours_4(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
9272    }
9273
9274    /**
9275     * Draws contours outlines or filled contours.
9276     *
9277     * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area
9278     * bounded by the contours if \(\texttt{thickness}&lt;0\) . The example below shows how to retrieve
9279     * connected components from the binary image and label them: :
9280     * INCLUDE: snippets/imgproc_drawContours.cpp
9281     *
9282     * @param image Destination image.
9283     * @param contours All the input contours. Each contour is stored as a point vector.
9284     * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
9285     * @param color Color of the contours.
9286     * thickness=#FILLED ), the contour interiors are drawn.
9287     * some of the contours (see maxLevel ).
9288     * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
9289     * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
9290     * parameter is only taken into account when there is hierarchy available.
9291     * \(\texttt{offset}=(dx,dy)\) .
9292     * <b>Note:</b> When thickness=#FILLED, the function is designed to handle connected components with holes correctly
9293     * even when no hierarchy data is provided. This is done by analyzing all the outlines together
9294     * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
9295     * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
9296     * of contours, or iterate over the collection using contourIdx parameter.
9297     */
9298    public static void drawContours(Mat image, List<MatOfPoint> contours, int contourIdx, Scalar color) {
9299        List<Mat> contours_tmplm = new ArrayList<Mat>((contours != null) ? contours.size() : 0);
9300        Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm);
9301        drawContours_5(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3]);
9302    }
9303
9304
9305    //
9306    // C++:  bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2)
9307    //
9308
9309    /**
9310     *
9311     * @param imgRect Image rectangle.
9312     * @param pt1 First line point.
9313     * @param pt2 Second line point.
9314     * @return automatically generated
9315     */
9316    public static boolean clipLine(Rect imgRect, Point pt1, Point pt2) {
9317        double[] pt1_out = new double[2];
9318        double[] pt2_out = new double[2];
9319        boolean retVal = clipLine_0(imgRect.x, imgRect.y, imgRect.width, imgRect.height, pt1.x, pt1.y, pt1_out, pt2.x, pt2.y, pt2_out);
9320        if(pt1!=null){ pt1.x = pt1_out[0]; pt1.y = pt1_out[1]; } 
9321        if(pt2!=null){ pt2.x = pt2_out[0]; pt2.y = pt2_out[1]; } 
9322        return retVal;
9323    }
9324
9325
9326    //
9327    // C++:  void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
9328    //
9329
9330    /**
9331     * Approximates an elliptic arc with a polyline.
9332     *
9333     * The function ellipse2Poly computes the vertices of a polyline that approximates the specified
9334     * elliptic arc. It is used by #ellipse. If {@code arcStart} is greater than {@code arcEnd}, they are swapped.
9335     *
9336     * @param center Center of the arc.
9337     * @param axes Half of the size of the ellipse main axes. See #ellipse for details.
9338     * @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
9339     * @param arcStart Starting angle of the elliptic arc in degrees.
9340     * @param arcEnd Ending angle of the elliptic arc in degrees.
9341     * @param delta Angle between the subsequent polyline vertices. It defines the approximation
9342     * accuracy.
9343     * @param pts Output vector of polyline vertices.
9344     */
9345    public static void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, MatOfPoint pts) {
9346        Mat pts_mat = pts;
9347        ellipse2Poly_0(center.x, center.y, axes.width, axes.height, angle, arcStart, arcEnd, delta, pts_mat.nativeObj);
9348    }
9349
9350
9351    //
9352    // C++:  void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false)
9353    //
9354
9355    /**
9356     * Draws a text string.
9357     *
9358     * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
9359     * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
9360     * example.
9361     *
9362     * @param img Image.
9363     * @param text Text string to be drawn.
9364     * @param org Bottom-left corner of the text string in the image.
9365     * @param fontFace Font type, see #HersheyFonts.
9366     * @param fontScale Font scale factor that is multiplied by the font-specific base size.
9367     * @param color Text color.
9368     * @param thickness Thickness of the lines used to draw a text.
9369     * @param lineType Line type. See #LineTypes
9370     * @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
9371     * it is at the top-left corner.
9372     */
9373    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, boolean bottomLeftOrigin) {
9374        putText_0(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, bottomLeftOrigin);
9375    }
9376
9377    /**
9378     * Draws a text string.
9379     *
9380     * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
9381     * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
9382     * example.
9383     *
9384     * @param img Image.
9385     * @param text Text string to be drawn.
9386     * @param org Bottom-left corner of the text string in the image.
9387     * @param fontFace Font type, see #HersheyFonts.
9388     * @param fontScale Font scale factor that is multiplied by the font-specific base size.
9389     * @param color Text color.
9390     * @param thickness Thickness of the lines used to draw a text.
9391     * @param lineType Line type. See #LineTypes
9392     * it is at the top-left corner.
9393     */
9394    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType) {
9395        putText_1(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
9396    }
9397
9398    /**
9399     * Draws a text string.
9400     *
9401     * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
9402     * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
9403     * example.
9404     *
9405     * @param img Image.
9406     * @param text Text string to be drawn.
9407     * @param org Bottom-left corner of the text string in the image.
9408     * @param fontFace Font type, see #HersheyFonts.
9409     * @param fontScale Font scale factor that is multiplied by the font-specific base size.
9410     * @param color Text color.
9411     * @param thickness Thickness of the lines used to draw a text.
9412     * it is at the top-left corner.
9413     */
9414    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness) {
9415        putText_2(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
9416    }
9417
9418    /**
9419     * Draws a text string.
9420     *
9421     * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
9422     * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
9423     * example.
9424     *
9425     * @param img Image.
9426     * @param text Text string to be drawn.
9427     * @param org Bottom-left corner of the text string in the image.
9428     * @param fontFace Font type, see #HersheyFonts.
9429     * @param fontScale Font scale factor that is multiplied by the font-specific base size.
9430     * @param color Text color.
9431     * it is at the top-left corner.
9432     */
9433    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color) {
9434        putText_3(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3]);
9435    }
9436
9437
9438    //
9439    // C++:  double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1)
9440    //
9441
9442    /**
9443     * Calculates the font-specific size to use to achieve a given height in pixels.
9444     *
9445     * @param fontFace Font to use, see cv::HersheyFonts.
9446     * @param pixelHeight Pixel height to compute the fontScale for
9447     * @param thickness Thickness of lines used to render the text.See putText for details.
9448     * @return The fontSize to use for cv::putText
9449     *
9450     * SEE: cv::putText
9451     */
9452    public static double getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness) {
9453        return getFontScaleFromHeight_0(fontFace, pixelHeight, thickness);
9454    }
9455
9456    /**
9457     * Calculates the font-specific size to use to achieve a given height in pixels.
9458     *
9459     * @param fontFace Font to use, see cv::HersheyFonts.
9460     * @param pixelHeight Pixel height to compute the fontScale for
9461     * @return The fontSize to use for cv::putText
9462     *
9463     * SEE: cv::putText
9464     */
9465    public static double getFontScaleFromHeight(int fontFace, int pixelHeight) {
9466        return getFontScaleFromHeight_1(fontFace, pixelHeight);
9467    }
9468
9469
9470    //
9471    // C++:  void cv::HoughLinesWithAccumulator(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
9472    //
9473
9474    /**
9475     * Finds lines in a binary image using the standard Hough transform and get accumulator.
9476     *
9477     * <b>Note:</b> This function is for bindings use only. Use original function in C++ code
9478     *
9479     * SEE: HoughLines
9480     * @param image automatically generated
9481     * @param lines automatically generated
9482     * @param rho automatically generated
9483     * @param theta automatically generated
9484     * @param threshold automatically generated
9485     * @param srn automatically generated
9486     * @param stn automatically generated
9487     * @param min_theta automatically generated
9488     * @param max_theta automatically generated
9489     */
9490    public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta) {
9491        HoughLinesWithAccumulator_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta, max_theta);
9492    }
9493
9494    /**
9495     * Finds lines in a binary image using the standard Hough transform and get accumulator.
9496     *
9497     * <b>Note:</b> This function is for bindings use only. Use original function in C++ code
9498     *
9499     * SEE: HoughLines
9500     * @param image automatically generated
9501     * @param lines automatically generated
9502     * @param rho automatically generated
9503     * @param theta automatically generated
9504     * @param threshold automatically generated
9505     * @param srn automatically generated
9506     * @param stn automatically generated
9507     * @param min_theta automatically generated
9508     */
9509    public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta) {
9510        HoughLinesWithAccumulator_1(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta);
9511    }
9512
9513    /**
9514     * Finds lines in a binary image using the standard Hough transform and get accumulator.
9515     *
9516     * <b>Note:</b> This function is for bindings use only. Use original function in C++ code
9517     *
9518     * SEE: HoughLines
9519     * @param image automatically generated
9520     * @param lines automatically generated
9521     * @param rho automatically generated
9522     * @param theta automatically generated
9523     * @param threshold automatically generated
9524     * @param srn automatically generated
9525     * @param stn automatically generated
9526     */
9527    public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) {
9528        HoughLinesWithAccumulator_2(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn);
9529    }
9530
9531    /**
9532     * Finds lines in a binary image using the standard Hough transform and get accumulator.
9533     *
9534     * <b>Note:</b> This function is for bindings use only. Use original function in C++ code
9535     *
9536     * SEE: HoughLines
9537     * @param image automatically generated
9538     * @param lines automatically generated
9539     * @param rho automatically generated
9540     * @param theta automatically generated
9541     * @param threshold automatically generated
9542     * @param srn automatically generated
9543     */
9544    public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn) {
9545        HoughLinesWithAccumulator_3(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn);
9546    }
9547
9548    /**
9549     * Finds lines in a binary image using the standard Hough transform and get accumulator.
9550     *
9551     * <b>Note:</b> This function is for bindings use only. Use original function in C++ code
9552     *
9553     * SEE: HoughLines
9554     * @param image automatically generated
9555     * @param lines automatically generated
9556     * @param rho automatically generated
9557     * @param theta automatically generated
9558     * @param threshold automatically generated
9559     */
9560    public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold) {
9561        HoughLinesWithAccumulator_4(image.nativeObj, lines.nativeObj, rho, theta, threshold);
9562    }
9563
9564
9565
9566// C++: Size getTextSize(const String& text, int fontFace, double fontScale, int thickness, int* baseLine);
9567//javadoc:getTextSize(text, fontFace, fontScale, thickness, baseLine)
9568public static Size getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine) {
9569    if(baseLine != null && baseLine.length != 1)
9570        throw new java.lang.IllegalArgumentException("'baseLine' must be 'int[1]' or 'null'.");
9571    Size retVal = new Size(n_getTextSize(text, fontFace, fontScale, thickness, baseLine));
9572    return retVal;
9573}
9574
9575
9576
9577
9578    // C++:  Ptr_LineSegmentDetector cv::createLineSegmentDetector(int refine = LSD_REFINE_STD, double scale = 0.8, double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, double log_eps = 0, double density_th = 0.7, int n_bins = 1024)
9579    private static native long createLineSegmentDetector_0(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th, int n_bins);
9580    private static native long createLineSegmentDetector_1(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th);
9581    private static native long createLineSegmentDetector_2(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps);
9582    private static native long createLineSegmentDetector_3(int refine, double scale, double sigma_scale, double quant, double ang_th);
9583    private static native long createLineSegmentDetector_4(int refine, double scale, double sigma_scale, double quant);
9584    private static native long createLineSegmentDetector_5(int refine, double scale, double sigma_scale);
9585    private static native long createLineSegmentDetector_6(int refine, double scale);
9586    private static native long createLineSegmentDetector_7(int refine);
9587    private static native long createLineSegmentDetector_8();
9588
9589    // C++:  Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F)
9590    private static native long getGaussianKernel_0(int ksize, double sigma, int ktype);
9591    private static native long getGaussianKernel_1(int ksize, double sigma);
9592
9593    // C++:  void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F)
9594    private static native void getDerivKernels_0(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize, boolean normalize, int ktype);
9595    private static native void getDerivKernels_1(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize, boolean normalize);
9596    private static native void getDerivKernels_2(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize);
9597
9598    // C++:  Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F)
9599    private static native long getGaborKernel_0(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi, int ktype);
9600    private static native long getGaborKernel_1(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi);
9601    private static native long getGaborKernel_2(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma);
9602
9603    // C++:  Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1))
9604    private static native long getStructuringElement_0(int shape, double ksize_width, double ksize_height, double anchor_x, double anchor_y);
9605    private static native long getStructuringElement_1(int shape, double ksize_width, double ksize_height);
9606
9607    // C++:  void cv::medianBlur(Mat src, Mat& dst, int ksize)
9608    private static native void medianBlur_0(long src_nativeObj, long dst_nativeObj, int ksize);
9609
9610    // C++:  void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT)
9611    private static native void GaussianBlur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY, int borderType);
9612    private static native void GaussianBlur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY);
9613    private static native void GaussianBlur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX);
9614
9615    // C++:  void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
9616    private static native void bilateralFilter_0(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int borderType);
9617    private static native void bilateralFilter_1(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace);
9618
9619    // C++:  void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT)
9620    private static native void boxFilter_0(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize, int borderType);
9621    private static native void boxFilter_1(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize);
9622    private static native void boxFilter_2(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y);
9623    private static native void boxFilter_3(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height);
9624
9625    // C++:  void cv::sqrBoxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT)
9626    private static native void sqrBoxFilter_0(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize, int borderType);
9627    private static native void sqrBoxFilter_1(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize);
9628    private static native void sqrBoxFilter_2(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y);
9629    private static native void sqrBoxFilter_3(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height);
9630
9631    // C++:  void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT)
9632    private static native void blur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y, int borderType);
9633    private static native void blur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y);
9634    private static native void blur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height);
9635
9636    // C++:  void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT)
9637    private static native void filter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta, int borderType);
9638    private static native void filter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta);
9639    private static native void filter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y);
9640    private static native void filter2D_3(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj);
9641
9642    // C++:  void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT)
9643    private static native void sepFilter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta, int borderType);
9644    private static native void sepFilter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta);
9645    private static native void sepFilter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y);
9646    private static native void sepFilter2D_3(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj);
9647
9648    // C++:  void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
9649    private static native void Sobel_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType);
9650    private static native void Sobel_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta);
9651    private static native void Sobel_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale);
9652    private static native void Sobel_3(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize);
9653    private static native void Sobel_4(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy);
9654
9655    // C++:  void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT)
9656    private static native void spatialGradient_0(long src_nativeObj, long dx_nativeObj, long dy_nativeObj, int ksize, int borderType);
9657    private static native void spatialGradient_1(long src_nativeObj, long dx_nativeObj, long dy_nativeObj, int ksize);
9658    private static native void spatialGradient_2(long src_nativeObj, long dx_nativeObj, long dy_nativeObj);
9659
9660    // C++:  void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
9661    private static native void Scharr_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta, int borderType);
9662    private static native void Scharr_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta);
9663    private static native void Scharr_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale);
9664    private static native void Scharr_3(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy);
9665
9666    // C++:  void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT)
9667    private static native void Laplacian_0(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta, int borderType);
9668    private static native void Laplacian_1(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta);
9669    private static native void Laplacian_2(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale);
9670    private static native void Laplacian_3(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize);
9671    private static native void Laplacian_4(long src_nativeObj, long dst_nativeObj, int ddepth);
9672
9673    // C++:  void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false)
9674    private static native void Canny_0(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2, int apertureSize, boolean L2gradient);
9675    private static native void Canny_1(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2, int apertureSize);
9676    private static native void Canny_2(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2);
9677
9678    // C++:  void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false)
9679    private static native void Canny_3(long dx_nativeObj, long dy_nativeObj, long edges_nativeObj, double threshold1, double threshold2, boolean L2gradient);
9680    private static native void Canny_4(long dx_nativeObj, long dy_nativeObj, long edges_nativeObj, double threshold1, double threshold2);
9681
9682    // C++:  void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT)
9683    private static native void cornerMinEigenVal_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType);
9684    private static native void cornerMinEigenVal_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize);
9685    private static native void cornerMinEigenVal_2(long src_nativeObj, long dst_nativeObj, int blockSize);
9686
9687    // C++:  void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT)
9688    private static native void cornerHarris_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k, int borderType);
9689    private static native void cornerHarris_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k);
9690
9691    // C++:  void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT)
9692    private static native void cornerEigenValsAndVecs_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType);
9693    private static native void cornerEigenValsAndVecs_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize);
9694
9695    // C++:  void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT)
9696    private static native void preCornerDetect_0(long src_nativeObj, long dst_nativeObj, int ksize, int borderType);
9697    private static native void preCornerDetect_1(long src_nativeObj, long dst_nativeObj, int ksize);
9698
9699    // C++:  void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria)
9700    private static native void cornerSubPix_0(long image_nativeObj, long corners_nativeObj, double winSize_width, double winSize_height, double zeroZone_width, double zeroZone_height, int criteria_type, int criteria_maxCount, double criteria_epsilon);
9701
9702    // C++:  void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04)
9703    private static native void goodFeaturesToTrack_0(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, boolean useHarrisDetector, double k);
9704    private static native void goodFeaturesToTrack_1(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, boolean useHarrisDetector);
9705    private static native void goodFeaturesToTrack_2(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize);
9706    private static native void goodFeaturesToTrack_3(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj);
9707    private static native void goodFeaturesToTrack_4(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance);
9708
9709    // C++:  void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04)
9710    private static native void goodFeaturesToTrack_5(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector, double k);
9711    private static native void goodFeaturesToTrack_6(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector);
9712    private static native void goodFeaturesToTrack_7(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize);
9713
9714    // C++:  void cv::goodFeaturesToTrack(Mat image, Mat& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat& cornersQuality, int blockSize = 3, int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04)
9715    private static native void goodFeaturesToTrackWithQuality_0(long image_nativeObj, long corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, long cornersQuality_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector, double k);
9716    private static native void goodFeaturesToTrackWithQuality_1(long image_nativeObj, long corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, long cornersQuality_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector);
9717    private static native void goodFeaturesToTrackWithQuality_2(long image_nativeObj, long corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, long cornersQuality_nativeObj, int blockSize, int gradientSize);
9718    private static native void goodFeaturesToTrackWithQuality_3(long image_nativeObj, long corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, long cornersQuality_nativeObj, int blockSize);
9719    private static native void goodFeaturesToTrackWithQuality_4(long image_nativeObj, long corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, long cornersQuality_nativeObj);
9720
9721    // C++:  void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
9722    private static native void HoughLines_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta);
9723    private static native void HoughLines_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta);
9724    private static native void HoughLines_2(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn);
9725    private static native void HoughLines_3(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn);
9726    private static native void HoughLines_4(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold);
9727
9728    // C++:  void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0)
9729    private static native void HoughLinesP_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double minLineLength, double maxLineGap);
9730    private static native void HoughLinesP_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double minLineLength);
9731    private static native void HoughLinesP_2(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold);
9732
9733    // C++:  void cv::HoughLinesPointSet(Mat point, Mat& lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step)
9734    private static native void HoughLinesPointSet_0(long point_nativeObj, long lines_nativeObj, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step);
9735
9736    // C++:  void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0)
9737    private static native void HoughCircles_0(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius);
9738    private static native void HoughCircles_1(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius);
9739    private static native void HoughCircles_2(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2);
9740    private static native void HoughCircles_3(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1);
9741    private static native void HoughCircles_4(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist);
9742
9743    // C++:  void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
9744    private static native void erode_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9745    private static native void erode_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType);
9746    private static native void erode_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations);
9747    private static native void erode_3(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y);
9748    private static native void erode_4(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj);
9749
9750    // C++:  void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
9751    private static native void dilate_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9752    private static native void dilate_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType);
9753    private static native void dilate_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations);
9754    private static native void dilate_3(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y);
9755    private static native void dilate_4(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj);
9756
9757    // C++:  void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
9758    private static native void morphologyEx_0(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9759    private static native void morphologyEx_1(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType);
9760    private static native void morphologyEx_2(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations);
9761    private static native void morphologyEx_3(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y);
9762    private static native void morphologyEx_4(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj);
9763
9764    // C++:  void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR)
9765    private static native void resize_0(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy, int interpolation);
9766    private static native void resize_1(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy);
9767    private static native void resize_2(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx);
9768    private static native void resize_3(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height);
9769
9770    // C++:  void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
9771    private static native void warpAffine_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9772    private static native void warpAffine_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode);
9773    private static native void warpAffine_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags);
9774    private static native void warpAffine_3(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height);
9775
9776    // C++:  void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
9777    private static native void warpPerspective_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9778    private static native void warpPerspective_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode);
9779    private static native void warpPerspective_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags);
9780    private static native void warpPerspective_3(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height);
9781
9782    // C++:  void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
9783    private static native void remap_0(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3);
9784    private static native void remap_1(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation, int borderMode);
9785    private static native void remap_2(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation);
9786
9787    // C++:  void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false)
9788    private static native void convertMaps_0(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type, boolean nninterpolation);
9789    private static native void convertMaps_1(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type);
9790
9791    // C++:  Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale)
9792    private static native long getRotationMatrix2D_0(double center_x, double center_y, double angle, double scale);
9793
9794    // C++:  void cv::invertAffineTransform(Mat M, Mat& iM)
9795    private static native void invertAffineTransform_0(long M_nativeObj, long iM_nativeObj);
9796
9797    // C++:  Mat cv::getPerspectiveTransform(Mat src, Mat dst, int solveMethod = DECOMP_LU)
9798    private static native long getPerspectiveTransform_0(long src_nativeObj, long dst_nativeObj, int solveMethod);
9799    private static native long getPerspectiveTransform_1(long src_nativeObj, long dst_nativeObj);
9800
9801    // C++:  Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst)
9802    private static native long getAffineTransform_0(long src_mat_nativeObj, long dst_mat_nativeObj);
9803
9804    // C++:  void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1)
9805    private static native void getRectSubPix_0(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj, int patchType);
9806    private static native void getRectSubPix_1(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj);
9807
9808    // C++:  void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags)
9809    private static native void logPolar_0(long src_nativeObj, long dst_nativeObj, double center_x, double center_y, double M, int flags);
9810
9811    // C++:  void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags)
9812    private static native void linearPolar_0(long src_nativeObj, long dst_nativeObj, double center_x, double center_y, double maxRadius, int flags);
9813
9814    // C++:  void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags)
9815    private static native void warpPolar_0(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double center_x, double center_y, double maxRadius, int flags);
9816
9817    // C++:  void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1)
9818    private static native void integral3_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj, int sdepth, int sqdepth);
9819    private static native void integral3_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj, int sdepth);
9820    private static native void integral3_2(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj);
9821
9822    // C++:  void cv::integral(Mat src, Mat& sum, int sdepth = -1)
9823    private static native void integral_0(long src_nativeObj, long sum_nativeObj, int sdepth);
9824    private static native void integral_1(long src_nativeObj, long sum_nativeObj);
9825
9826    // C++:  void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1)
9827    private static native void integral2_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, int sdepth, int sqdepth);
9828    private static native void integral2_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, int sdepth);
9829    private static native void integral2_2(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj);
9830
9831    // C++:  void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat())
9832    private static native void accumulate_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj);
9833    private static native void accumulate_1(long src_nativeObj, long dst_nativeObj);
9834
9835    // C++:  void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat())
9836    private static native void accumulateSquare_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj);
9837    private static native void accumulateSquare_1(long src_nativeObj, long dst_nativeObj);
9838
9839    // C++:  void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
9840    private static native void accumulateProduct_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
9841    private static native void accumulateProduct_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);
9842
9843    // C++:  void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat())
9844    private static native void accumulateWeighted_0(long src_nativeObj, long dst_nativeObj, double alpha, long mask_nativeObj);
9845    private static native void accumulateWeighted_1(long src_nativeObj, long dst_nativeObj, double alpha);
9846
9847    // C++:  Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0)
9848    private static native double[] phaseCorrelate_0(long src1_nativeObj, long src2_nativeObj, long window_nativeObj, double[] response_out);
9849    private static native double[] phaseCorrelate_1(long src1_nativeObj, long src2_nativeObj, long window_nativeObj);
9850    private static native double[] phaseCorrelate_2(long src1_nativeObj, long src2_nativeObj);
9851
9852    // C++:  void cv::createHanningWindow(Mat& dst, Size winSize, int type)
9853    private static native void createHanningWindow_0(long dst_nativeObj, double winSize_width, double winSize_height, int type);
9854
9855    // C++:  void cv::divSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false)
9856    private static native void divSpectrums_0(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags, boolean conjB);
9857    private static native void divSpectrums_1(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags);
9858
9859    // C++:  double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type)
9860    private static native double threshold_0(long src_nativeObj, long dst_nativeObj, double thresh, double maxval, int type);
9861
9862    // C++:  void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C)
9863    private static native void adaptiveThreshold_0(long src_nativeObj, long dst_nativeObj, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C);
9864
9865    // C++:  void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT)
9866    private static native void pyrDown_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType);
9867    private static native void pyrDown_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height);
9868    private static native void pyrDown_2(long src_nativeObj, long dst_nativeObj);
9869
9870    // C++:  void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT)
9871    private static native void pyrUp_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType);
9872    private static native void pyrUp_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height);
9873    private static native void pyrUp_2(long src_nativeObj, long dst_nativeObj);
9874
9875    // C++:  void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false)
9876    private static native void calcHist_0(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj, boolean accumulate);
9877    private static native void calcHist_1(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj);
9878
9879    // C++:  void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale)
9880    private static native void calcBackProject_0(long images_mat_nativeObj, long channels_mat_nativeObj, long hist_nativeObj, long dst_nativeObj, long ranges_mat_nativeObj, double scale);
9881
9882    // C++:  double cv::compareHist(Mat H1, Mat H2, int method)
9883    private static native double compareHist_0(long H1_nativeObj, long H2_nativeObj, int method);
9884
9885    // C++:  void cv::equalizeHist(Mat src, Mat& dst)
9886    private static native void equalizeHist_0(long src_nativeObj, long dst_nativeObj);
9887
9888    // C++:  Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8))
9889    private static native long createCLAHE_0(double clipLimit, double tileGridSize_width, double tileGridSize_height);
9890    private static native long createCLAHE_1(double clipLimit);
9891    private static native long createCLAHE_2();
9892
9893    // C++:  float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr<float>(), Mat& flow = Mat())
9894    private static native float EMD_0(long signature1_nativeObj, long signature2_nativeObj, int distType, long cost_nativeObj, long flow_nativeObj);
9895    private static native float EMD_1(long signature1_nativeObj, long signature2_nativeObj, int distType, long cost_nativeObj);
9896    private static native float EMD_3(long signature1_nativeObj, long signature2_nativeObj, int distType);
9897
9898    // C++:  void cv::watershed(Mat image, Mat& markers)
9899    private static native void watershed_0(long image_nativeObj, long markers_nativeObj);
9900
9901    // C++:  void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1))
9902    private static native void pyrMeanShiftFiltering_0(long src_nativeObj, long dst_nativeObj, double sp, double sr, int maxLevel, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon);
9903    private static native void pyrMeanShiftFiltering_1(long src_nativeObj, long dst_nativeObj, double sp, double sr, int maxLevel);
9904    private static native void pyrMeanShiftFiltering_2(long src_nativeObj, long dst_nativeObj, double sp, double sr);
9905
9906    // C++:  void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL)
9907    private static native void grabCut_0(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount, int mode);
9908    private static native void grabCut_1(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount);
9909
9910    // C++:  void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP)
9911    private static native void distanceTransformWithLabels_0(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize, int labelType);
9912    private static native void distanceTransformWithLabels_1(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize);
9913
9914    // C++:  void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F)
9915    private static native void distanceTransform_0(long src_nativeObj, long dst_nativeObj, int distanceType, int maskSize, int dstType);
9916    private static native void distanceTransform_1(long src_nativeObj, long dst_nativeObj, int distanceType, int maskSize);
9917
9918    // C++:  int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4)
9919    private static native int floodFill_0(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3, int flags);
9920    private static native int floodFill_1(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3);
9921    private static native int floodFill_2(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3);
9922    private static native int floodFill_3(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out);
9923    private static native int floodFill_4(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3);
9924
9925    // C++:  void cv::blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat& dst)
9926    private static native void blendLinear_0(long src1_nativeObj, long src2_nativeObj, long weights1_nativeObj, long weights2_nativeObj, long dst_nativeObj);
9927
9928    // C++:  void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0)
9929    private static native void cvtColor_0(long src_nativeObj, long dst_nativeObj, int code, int dstCn);
9930    private static native void cvtColor_1(long src_nativeObj, long dst_nativeObj, int code);
9931
9932    // C++:  void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code)
9933    private static native void cvtColorTwoPlane_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int code);
9934
9935    // C++:  void cv::demosaicing(Mat src, Mat& dst, int code, int dstCn = 0)
9936    private static native void demosaicing_0(long src_nativeObj, long dst_nativeObj, int code, int dstCn);
9937    private static native void demosaicing_1(long src_nativeObj, long dst_nativeObj, int code);
9938
9939    // C++:  Moments cv::moments(Mat array, bool binaryImage = false)
9940    private static native double[] moments_0(long array_nativeObj, boolean binaryImage);
9941    private static native double[] moments_1(long array_nativeObj);
9942
9943    // C++:  void cv::HuMoments(Moments m, Mat& hu)
9944    private static native void HuMoments_0(double m_m00, double m_m10, double m_m01, double m_m20, double m_m11, double m_m02, double m_m30, double m_m21, double m_m12, double m_m03, long hu_nativeObj);
9945
9946    // C++:  void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat())
9947    private static native void matchTemplate_0(long image_nativeObj, long templ_nativeObj, long result_nativeObj, int method, long mask_nativeObj);
9948    private static native void matchTemplate_1(long image_nativeObj, long templ_nativeObj, long result_nativeObj, int method);
9949
9950    // C++:  int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype)
9951    private static native int connectedComponentsWithAlgorithm_0(long image_nativeObj, long labels_nativeObj, int connectivity, int ltype, int ccltype);
9952
9953    // C++:  int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S)
9954    private static native int connectedComponents_0(long image_nativeObj, long labels_nativeObj, int connectivity, int ltype);
9955    private static native int connectedComponents_1(long image_nativeObj, long labels_nativeObj, int connectivity);
9956    private static native int connectedComponents_2(long image_nativeObj, long labels_nativeObj);
9957
9958    // C++:  int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype)
9959    private static native int connectedComponentsWithStatsWithAlgorithm_0(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity, int ltype, int ccltype);
9960
9961    // C++:  int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S)
9962    private static native int connectedComponentsWithStats_0(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity, int ltype);
9963    private static native int connectedComponentsWithStats_1(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity);
9964    private static native int connectedComponentsWithStats_2(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj);
9965
9966    // C++:  void cv::findContours(Mat image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point())
9967    private static native void findContours_0(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method, double offset_x, double offset_y);
9968    private static native void findContours_1(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method);
9969
9970    // C++:  void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed)
9971    private static native void approxPolyDP_0(long curve_mat_nativeObj, long approxCurve_mat_nativeObj, double epsilon, boolean closed);
9972
9973    // C++:  double cv::arcLength(vector_Point2f curve, bool closed)
9974    private static native double arcLength_0(long curve_mat_nativeObj, boolean closed);
9975
9976    // C++:  Rect cv::boundingRect(Mat array)
9977    private static native double[] boundingRect_0(long array_nativeObj);
9978
9979    // C++:  double cv::contourArea(Mat contour, bool oriented = false)
9980    private static native double contourArea_0(long contour_nativeObj, boolean oriented);
9981    private static native double contourArea_1(long contour_nativeObj);
9982
9983    // C++:  RotatedRect cv::minAreaRect(vector_Point2f points)
9984    private static native double[] minAreaRect_0(long points_mat_nativeObj);
9985
9986    // C++:  void cv::boxPoints(RotatedRect box, Mat& points)
9987    private static native void boxPoints_0(double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, long points_nativeObj);
9988
9989    // C++:  void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius)
9990    private static native void minEnclosingCircle_0(long points_mat_nativeObj, double[] center_out, double[] radius_out);
9991
9992    // C++:  double cv::minEnclosingTriangle(Mat points, Mat& triangle)
9993    private static native double minEnclosingTriangle_0(long points_nativeObj, long triangle_nativeObj);
9994
9995    // C++:  double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter)
9996    private static native double matchShapes_0(long contour1_nativeObj, long contour2_nativeObj, int method, double parameter);
9997
9998    // C++:  void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false,  _hidden_  returnPoints = true)
9999    private static native void convexHull_0(long points_mat_nativeObj, long hull_mat_nativeObj, boolean clockwise);
10000    private static native void convexHull_2(long points_mat_nativeObj, long hull_mat_nativeObj);
10001
10002    // C++:  void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects)
10003    private static native void convexityDefects_0(long contour_mat_nativeObj, long convexhull_mat_nativeObj, long convexityDefects_mat_nativeObj);
10004
10005    // C++:  bool cv::isContourConvex(vector_Point contour)
10006    private static native boolean isContourConvex_0(long contour_mat_nativeObj);
10007
10008    // C++:  float cv::intersectConvexConvex(Mat p1, Mat p2, Mat& p12, bool handleNested = true)
10009    private static native float intersectConvexConvex_0(long p1_nativeObj, long p2_nativeObj, long p12_nativeObj, boolean handleNested);
10010    private static native float intersectConvexConvex_1(long p1_nativeObj, long p2_nativeObj, long p12_nativeObj);
10011
10012    // C++:  RotatedRect cv::fitEllipse(vector_Point2f points)
10013    private static native double[] fitEllipse_0(long points_mat_nativeObj);
10014
10015    // C++:  RotatedRect cv::fitEllipseAMS(Mat points)
10016    private static native double[] fitEllipseAMS_0(long points_nativeObj);
10017
10018    // C++:  RotatedRect cv::fitEllipseDirect(Mat points)
10019    private static native double[] fitEllipseDirect_0(long points_nativeObj);
10020
10021    // C++:  void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps)
10022    private static native void fitLine_0(long points_nativeObj, long line_nativeObj, int distType, double param, double reps, double aeps);
10023
10024    // C++:  double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist)
10025    private static native double pointPolygonTest_0(long contour_mat_nativeObj, double pt_x, double pt_y, boolean measureDist);
10026
10027    // C++:  int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion)
10028    private static native int rotatedRectangleIntersection_0(double rect1_center_x, double rect1_center_y, double rect1_size_width, double rect1_size_height, double rect1_angle, double rect2_center_x, double rect2_center_y, double rect2_size_width, double rect2_size_height, double rect2_angle, long intersectingRegion_nativeObj);
10029
10030    // C++:  Ptr_GeneralizedHoughBallard cv::createGeneralizedHoughBallard()
10031    private static native long createGeneralizedHoughBallard_0();
10032
10033    // C++:  Ptr_GeneralizedHoughGuil cv::createGeneralizedHoughGuil()
10034    private static native long createGeneralizedHoughGuil_0();
10035
10036    // C++:  void cv::applyColorMap(Mat src, Mat& dst, int colormap)
10037    private static native void applyColorMap_0(long src_nativeObj, long dst_nativeObj, int colormap);
10038
10039    // C++:  void cv::applyColorMap(Mat src, Mat& dst, Mat userColor)
10040    private static native void applyColorMap_1(long src_nativeObj, long dst_nativeObj, long userColor_nativeObj);
10041
10042    // C++:  void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10043    private static native void line_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10044    private static native void line_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10045    private static native void line_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10046    private static native void line_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);
10047
10048    // C++:  void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1)
10049    private static native void arrowedLine_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift, double tipLength);
10050    private static native void arrowedLine_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift);
10051    private static native void arrowedLine_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type);
10052    private static native void arrowedLine_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10053    private static native void arrowedLine_4(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);
10054
10055    // C++:  void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10056    private static native void rectangle_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10057    private static native void rectangle_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10058    private static native void rectangle_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10059    private static native void rectangle_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);
10060
10061    // C++:  void cv::rectangle(Mat& img, Rect rec, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10062    private static native void rectangle_4(long img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10063    private static native void rectangle_5(long img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10064    private static native void rectangle_6(long img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10065    private static native void rectangle_7(long img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3);
10066
10067    // C++:  void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10068    private static native void circle_0(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10069    private static native void circle_1(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10070    private static native void circle_2(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10071    private static native void circle_3(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3);
10072
10073    // C++:  void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10074    private static native void ellipse_0(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10075    private static native void ellipse_1(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10076    private static native void ellipse_2(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10077    private static native void ellipse_3(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3);
10078
10079    // C++:  void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8)
10080    private static native void ellipse_4(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10081    private static native void ellipse_5(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10082    private static native void ellipse_6(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3);
10083
10084    // C++:  void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8)
10085    private static native void drawMarker_0(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness, int line_type);
10086    private static native void drawMarker_1(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness);
10087    private static native void drawMarker_2(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize);
10088    private static native void drawMarker_3(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType);
10089    private static native void drawMarker_4(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3);
10090
10091    // C++:  void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0)
10092    private static native void fillConvexPoly_0(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift);
10093    private static native void fillConvexPoly_1(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType);
10094    private static native void fillConvexPoly_2(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3);
10095
10096    // C++:  void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point())
10097    private static native void fillPoly_0(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift, double offset_x, double offset_y);
10098    private static native void fillPoly_1(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift);
10099    private static native void fillPoly_2(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType);
10100    private static native void fillPoly_3(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3);
10101
10102    // C++:  void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0)
10103    private static native void polylines_0(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
10104    private static native void polylines_1(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10105    private static native void polylines_2(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10106    private static native void polylines_3(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3);
10107
10108    // C++:  void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point())
10109    private static native void drawContours_0(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj, int maxLevel, double offset_x, double offset_y);
10110    private static native void drawContours_1(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj, int maxLevel);
10111    private static native void drawContours_2(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj);
10112    private static native void drawContours_3(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10113    private static native void drawContours_4(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10114    private static native void drawContours_5(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3);
10115
10116    // C++:  bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2)
10117    private static native boolean clipLine_0(int imgRect_x, int imgRect_y, int imgRect_width, int imgRect_height, double pt1_x, double pt1_y, double[] pt1_out, double pt2_x, double pt2_y, double[] pt2_out);
10118
10119    // C++:  void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
10120    private static native void ellipse2Poly_0(double center_x, double center_y, double axes_width, double axes_height, int angle, int arcStart, int arcEnd, int delta, long pts_mat_nativeObj);
10121
10122    // C++:  void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false)
10123    private static native void putText_0(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, boolean bottomLeftOrigin);
10124    private static native void putText_1(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
10125    private static native void putText_2(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
10126    private static native void putText_3(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3);
10127
10128    // C++:  double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1)
10129    private static native double getFontScaleFromHeight_0(int fontFace, int pixelHeight, int thickness);
10130    private static native double getFontScaleFromHeight_1(int fontFace, int pixelHeight);
10131
10132    // C++:  void cv::HoughLinesWithAccumulator(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
10133    private static native void HoughLinesWithAccumulator_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta);
10134    private static native void HoughLinesWithAccumulator_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta);
10135    private static native void HoughLinesWithAccumulator_2(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn);
10136    private static native void HoughLinesWithAccumulator_3(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn);
10137    private static native void HoughLinesWithAccumulator_4(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold);
10138private static native double[] n_getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine);
10139
10140}