001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.wpilibj; 006 007import static edu.wpi.first.util.ErrorMessages.requireNonNullParam; 008 009import edu.wpi.first.hal.FRCNetComm.tResourceType; 010import edu.wpi.first.hal.HAL; 011import edu.wpi.first.hal.SimBoolean; 012import edu.wpi.first.hal.SimDevice; 013import edu.wpi.first.hal.SimDevice.Direction; 014import edu.wpi.first.hal.SimDouble; 015import edu.wpi.first.util.sendable.Sendable; 016import edu.wpi.first.util.sendable.SendableBuilder; 017import edu.wpi.first.util.sendable.SendableRegistry; 018import java.util.ArrayList; 019import java.util.List; 020 021/** 022 * Ultrasonic rangefinder class. The Ultrasonic rangefinder measures absolute distance based on the 023 * round-trip time of a ping generated by the controller. These sensors use two transducers, a 024 * speaker and a microphone both tuned to the ultrasonic range. A common ultrasonic sensor, the 025 * Daventech SRF04 requires a short pulse to be generated on a digital channel. This causes the 026 * chirp to be emitted. A second line becomes high as the ping is transmitted and goes low when the 027 * echo is received. The time that the line is high determines the round trip distance (time of 028 * flight). 029 */ 030public class Ultrasonic implements Sendable, AutoCloseable { 031 // Time (sec) for the ping trigger pulse. 032 private static final double kPingTime = 10 * 1e-6; 033 private static final double kSpeedOfSoundInchesPerSec = 1130.0 * 12.0; 034 // ultrasonic sensor list 035 private static final List<Ultrasonic> m_sensors = new ArrayList<>(); 036 // automatic round robin mode 037 private static volatile boolean m_automaticEnabled; 038 private DigitalInput m_echoChannel; 039 private DigitalOutput m_pingChannel; 040 private final boolean m_allocatedChannels; 041 private boolean m_enabled; 042 private Counter m_counter; 043 // task doing the round-robin automatic sensing 044 private static Thread m_task; 045 private static int m_instances; 046 047 private SimDevice m_simDevice; 048 private SimBoolean m_simRangeValid; 049 private SimDouble m_simRange; 050 051 /** 052 * Background task that goes through the list of ultrasonic sensors and pings each one in turn. 053 * The counter is configured to read the timing of the returned echo pulse. 054 * 055 * <p><b>DANGER WILL ROBINSON, DANGER WILL ROBINSON:</b> This code runs as a task and assumes that 056 * none of the ultrasonic sensors will change while it's running. If one does, then this will 057 * certainly break. Make sure to disable automatic mode before changing anything with the 058 * sensors!! 059 */ 060 private static class UltrasonicChecker extends Thread { 061 @Override 062 public synchronized void run() { 063 while (m_automaticEnabled) { 064 for (Ultrasonic sensor : m_sensors) { 065 if (!m_automaticEnabled) { 066 break; 067 } 068 069 if (sensor.isEnabled()) { 070 sensor.m_pingChannel.pulse(kPingTime); // do the ping 071 } 072 073 Timer.delay(0.1); // wait for ping to return 074 } 075 } 076 } 077 } 078 079 /** 080 * Initialize the Ultrasonic Sensor. This is the common code that initializes the ultrasonic 081 * sensor given that there are two digital I/O channels allocated. If the system was running in 082 * automatic mode (round-robin) when the new sensor is added, it is stopped, the sensor is added, 083 * then automatic mode is restored. 084 */ 085 private synchronized void initialize() { 086 m_simDevice = SimDevice.create("Ultrasonic", m_echoChannel.getChannel()); 087 if (m_simDevice != null) { 088 m_simRangeValid = m_simDevice.createBoolean("Range Valid", Direction.kInput, true); 089 m_simRange = m_simDevice.createDouble("Range (in)", Direction.kInput, 0.0); 090 m_pingChannel.setSimDevice(m_simDevice); 091 m_echoChannel.setSimDevice(m_simDevice); 092 } 093 final boolean originalMode = m_automaticEnabled; 094 setAutomaticMode(false); // kill task when adding a new sensor 095 m_sensors.add(this); 096 097 m_counter = new Counter(m_echoChannel); // set up counter for this 098 SendableRegistry.addChild(this, m_counter); 099 // sensor 100 m_counter.setMaxPeriod(1.0); 101 m_counter.setSemiPeriodMode(true); 102 m_counter.reset(); 103 m_enabled = true; // make it available for round-robin scheduling 104 setAutomaticMode(originalMode); 105 106 m_instances++; 107 HAL.report(tResourceType.kResourceType_Ultrasonic, m_instances); 108 SendableRegistry.addLW(this, "Ultrasonic", m_echoChannel.getChannel()); 109 } 110 111 public int getEchoChannel() { 112 return m_echoChannel.getChannel(); 113 } 114 115 /** 116 * Create an instance of the Ultrasonic Sensor. This is designed to support the Daventech SRF04 117 * and Vex ultrasonic sensors. 118 * 119 * @param pingChannel The digital output channel that sends the pulse to initiate the sensor 120 * sending the ping. 121 * @param echoChannel The digital input channel that receives the echo. The length of time that 122 * the echo is high represents the round trip time of the ping, and the distance. 123 */ 124 public Ultrasonic(final int pingChannel, final int echoChannel) { 125 m_pingChannel = new DigitalOutput(pingChannel); 126 m_echoChannel = new DigitalInput(echoChannel); 127 SendableRegistry.addChild(this, m_pingChannel); 128 SendableRegistry.addChild(this, m_echoChannel); 129 m_allocatedChannels = true; 130 initialize(); 131 } 132 133 /** 134 * Create an instance of an Ultrasonic Sensor from a DigitalInput for the echo channel and a 135 * DigitalOutput for the ping channel. 136 * 137 * @param pingChannel The digital output object that starts the sensor doing a ping. Requires a 138 * 10uS pulse to start. 139 * @param echoChannel The digital input object that times the return pulse to determine the range. 140 */ 141 public Ultrasonic(DigitalOutput pingChannel, DigitalInput echoChannel) { 142 requireNonNullParam(pingChannel, "pingChannel", "Ultrasonic"); 143 requireNonNullParam(echoChannel, "echoChannel", "Ultrasonic"); 144 145 m_allocatedChannels = false; 146 m_pingChannel = pingChannel; 147 m_echoChannel = echoChannel; 148 initialize(); 149 } 150 151 /** 152 * Destructor for the ultrasonic sensor. Delete the instance of the ultrasonic sensor by freeing 153 * the allocated digital channels. If the system was in automatic mode (round-robin), then it is 154 * stopped, then started again after this sensor is removed (provided this wasn't the last 155 * sensor). 156 */ 157 @Override 158 public synchronized void close() { 159 SendableRegistry.remove(this); 160 final boolean wasAutomaticMode = m_automaticEnabled; 161 setAutomaticMode(false); 162 if (m_allocatedChannels) { 163 if (m_pingChannel != null) { 164 m_pingChannel.close(); 165 } 166 if (m_echoChannel != null) { 167 m_echoChannel.close(); 168 } 169 } 170 171 if (m_counter != null) { 172 m_counter.close(); 173 m_counter = null; 174 } 175 176 m_pingChannel = null; 177 m_echoChannel = null; 178 synchronized (m_sensors) { 179 m_sensors.remove(this); 180 } 181 if (!m_sensors.isEmpty() && wasAutomaticMode) { 182 setAutomaticMode(true); 183 } 184 185 if (m_simDevice != null) { 186 m_simDevice.close(); 187 m_simDevice = null; 188 } 189 } 190 191 /** 192 * Turn Automatic mode on/off for all sensors. 193 * 194 * <p>When in Automatic mode, all sensors will fire in round-robin, waiting a set time between 195 * each sensor. 196 * 197 * @param enabling Set to true if round-robin scheduling should start for all the ultrasonic 198 * sensors. This scheduling method assures that the sensors are non-interfering because no two 199 * sensors fire at the same time. If another scheduling algorithm is preferred, it can be 200 * implemented by pinging the sensors manually and waiting for the results to come back. 201 */ 202 public static synchronized void setAutomaticMode(boolean enabling) { 203 if (enabling == m_automaticEnabled) { 204 return; // ignore the case of no change 205 } 206 m_automaticEnabled = enabling; 207 208 if (enabling) { 209 /* Clear all the counters so no data is valid. No synchronization is 210 * needed because the background task is stopped. 211 */ 212 for (Ultrasonic u : m_sensors) { 213 u.m_counter.reset(); 214 } 215 216 // Start round robin task 217 m_task = new UltrasonicChecker(); 218 m_task.start(); 219 } else { 220 if (m_task != null) { 221 // Wait for background task to stop running 222 try { 223 m_task.join(); 224 m_task = null; 225 } catch (InterruptedException ex) { 226 Thread.currentThread().interrupt(); 227 ex.printStackTrace(); 228 } 229 } 230 231 /* Clear all the counters (data now invalid) since automatic mode is 232 * disabled. No synchronization is needed because the background task is 233 * stopped. 234 */ 235 for (Ultrasonic u : m_sensors) { 236 u.m_counter.reset(); 237 } 238 } 239 } 240 241 /** 242 * Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only 243 * works if automatic (round-robin) mode is disabled. A single ping is sent out, and the counter 244 * should count the semi-period when it comes in. The counter is reset to make the current value 245 * invalid. 246 */ 247 public void ping() { 248 setAutomaticMode(false); // turn off automatic round-robin if pinging 249 // single sensor 250 m_counter.reset(); // reset the counter to zero (invalid data now) 251 // do the ping to start getting a single range 252 m_pingChannel.pulse(kPingTime); 253 } 254 255 /** 256 * Check if there is a valid range measurement. The ranges are accumulated in a counter that will 257 * increment on each edge of the echo (return) signal. If the count is not at least 2, then the 258 * range has not yet been measured, and is invalid. 259 * 260 * @return true if the range is valid 261 */ 262 public boolean isRangeValid() { 263 if (m_simRangeValid != null) { 264 return m_simRangeValid.get(); 265 } 266 return m_counter.get() > 1; 267 } 268 269 /** 270 * Get the range in inches from the ultrasonic sensor. If there is no valid value yet, i.e. at 271 * least one measurement hasn't completed, then return 0. 272 * 273 * @return double Range in inches of the target returned from the ultrasonic sensor. 274 */ 275 public double getRangeInches() { 276 if (isRangeValid()) { 277 if (m_simRange != null) { 278 return m_simRange.get(); 279 } 280 return m_counter.getPeriod() * kSpeedOfSoundInchesPerSec / 2.0; 281 } else { 282 return 0; 283 } 284 } 285 286 /** 287 * Get the range in millimeters from the ultrasonic sensor. If there is no valid value yet, i.e. 288 * at least one measurement hasn't completed, then return 0. 289 * 290 * @return double Range in millimeters of the target returned by the ultrasonic sensor. 291 */ 292 public double getRangeMM() { 293 return getRangeInches() * 25.4; 294 } 295 296 /** 297 * Is the ultrasonic enabled. 298 * 299 * @return true if the ultrasonic is enabled 300 */ 301 public boolean isEnabled() { 302 return m_enabled; 303 } 304 305 /** 306 * Set if the ultrasonic is enabled. 307 * 308 * @param enable set to true to enable the ultrasonic 309 */ 310 public void setEnabled(boolean enable) { 311 m_enabled = enable; 312 } 313 314 @Override 315 public void initSendable(SendableBuilder builder) { 316 builder.setSmartDashboardType("Ultrasonic"); 317 builder.addDoubleProperty("Value", this::getRangeInches, null); 318 } 319}