001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.wpilibj;
006
007import static edu.wpi.first.util.ErrorMessages.requireNonNullParam;
008
009import edu.wpi.first.hal.FRCNetComm.tResourceType;
010import edu.wpi.first.hal.HAL;
011import edu.wpi.first.hal.SimBoolean;
012import edu.wpi.first.hal.SimDevice;
013import edu.wpi.first.hal.SimDevice.Direction;
014import edu.wpi.first.hal.SimDouble;
015import edu.wpi.first.util.sendable.Sendable;
016import edu.wpi.first.util.sendable.SendableBuilder;
017import edu.wpi.first.util.sendable.SendableRegistry;
018import java.util.ArrayList;
019import java.util.List;
020
021/**
022 * Ultrasonic rangefinder class. The Ultrasonic rangefinder measures absolute distance based on the
023 * round-trip time of a ping generated by the controller. These sensors use two transducers, a
024 * speaker and a microphone both tuned to the ultrasonic range. A common ultrasonic sensor, the
025 * Daventech SRF04 requires a short pulse to be generated on a digital channel. This causes the
026 * chirp to be emitted. A second line becomes high as the ping is transmitted and goes low when the
027 * echo is received. The time that the line is high determines the round trip distance (time of
028 * flight).
029 */
030public class Ultrasonic implements Sendable, AutoCloseable {
031  // Time (sec) for the ping trigger pulse.
032  private static final double kPingTime = 10 * 1e-6;
033  private static final double kSpeedOfSoundInchesPerSec = 1130.0 * 12.0;
034  // ultrasonic sensor list
035  private static final List<Ultrasonic> m_sensors = new ArrayList<>();
036  // automatic round robin mode
037  private static volatile boolean m_automaticEnabled;
038  private DigitalInput m_echoChannel;
039  private DigitalOutput m_pingChannel;
040  private final boolean m_allocatedChannels;
041  private boolean m_enabled;
042  private Counter m_counter;
043  // task doing the round-robin automatic sensing
044  private static Thread m_task;
045  private static int m_instances;
046
047  private SimDevice m_simDevice;
048  private SimBoolean m_simRangeValid;
049  private SimDouble m_simRange;
050
051  /**
052   * Background task that goes through the list of ultrasonic sensors and pings each one in turn.
053   * The counter is configured to read the timing of the returned echo pulse.
054   *
055   * <p><b>DANGER WILL ROBINSON, DANGER WILL ROBINSON:</b> This code runs as a task and assumes that
056   * none of the ultrasonic sensors will change while it's running. If one does, then this will
057   * certainly break. Make sure to disable automatic mode before changing anything with the
058   * sensors!!
059   */
060  private static class UltrasonicChecker extends Thread {
061    @Override
062    public synchronized void run() {
063      while (m_automaticEnabled) {
064        for (Ultrasonic sensor : m_sensors) {
065          if (!m_automaticEnabled) {
066            break;
067          }
068
069          if (sensor.isEnabled()) {
070            sensor.m_pingChannel.pulse(kPingTime); // do the ping
071          }
072
073          Timer.delay(0.1); // wait for ping to return
074        }
075      }
076    }
077  }
078
079  /**
080   * Initialize the Ultrasonic Sensor. This is the common code that initializes the ultrasonic
081   * sensor given that there are two digital I/O channels allocated. If the system was running in
082   * automatic mode (round-robin) when the new sensor is added, it is stopped, the sensor is added,
083   * then automatic mode is restored.
084   */
085  private synchronized void initialize() {
086    m_simDevice = SimDevice.create("Ultrasonic", m_echoChannel.getChannel());
087    if (m_simDevice != null) {
088      m_simRangeValid = m_simDevice.createBoolean("Range Valid", Direction.kInput, true);
089      m_simRange = m_simDevice.createDouble("Range (in)", Direction.kInput, 0.0);
090      m_pingChannel.setSimDevice(m_simDevice);
091      m_echoChannel.setSimDevice(m_simDevice);
092    }
093    final boolean originalMode = m_automaticEnabled;
094    setAutomaticMode(false); // kill task when adding a new sensor
095    m_sensors.add(this);
096
097    m_counter = new Counter(m_echoChannel); // set up counter for this
098    SendableRegistry.addChild(this, m_counter);
099    // sensor
100    m_counter.setMaxPeriod(1.0);
101    m_counter.setSemiPeriodMode(true);
102    m_counter.reset();
103    m_enabled = true; // make it available for round-robin scheduling
104    setAutomaticMode(originalMode);
105
106    m_instances++;
107    HAL.report(tResourceType.kResourceType_Ultrasonic, m_instances);
108    SendableRegistry.addLW(this, "Ultrasonic", m_echoChannel.getChannel());
109  }
110
111  public int getEchoChannel() {
112    return m_echoChannel.getChannel();
113  }
114
115  /**
116   * Create an instance of the Ultrasonic Sensor. This is designed to support the Daventech SRF04
117   * and Vex ultrasonic sensors.
118   *
119   * @param pingChannel The digital output channel that sends the pulse to initiate the sensor
120   *     sending the ping.
121   * @param echoChannel The digital input channel that receives the echo. The length of time that
122   *     the echo is high represents the round trip time of the ping, and the distance.
123   */
124  public Ultrasonic(final int pingChannel, final int echoChannel) {
125    m_pingChannel = new DigitalOutput(pingChannel);
126    m_echoChannel = new DigitalInput(echoChannel);
127    SendableRegistry.addChild(this, m_pingChannel);
128    SendableRegistry.addChild(this, m_echoChannel);
129    m_allocatedChannels = true;
130    initialize();
131  }
132
133  /**
134   * Create an instance of an Ultrasonic Sensor from a DigitalInput for the echo channel and a
135   * DigitalOutput for the ping channel.
136   *
137   * @param pingChannel The digital output object that starts the sensor doing a ping. Requires a
138   *     10uS pulse to start.
139   * @param echoChannel The digital input object that times the return pulse to determine the range.
140   */
141  public Ultrasonic(DigitalOutput pingChannel, DigitalInput echoChannel) {
142    requireNonNullParam(pingChannel, "pingChannel", "Ultrasonic");
143    requireNonNullParam(echoChannel, "echoChannel", "Ultrasonic");
144
145    m_allocatedChannels = false;
146    m_pingChannel = pingChannel;
147    m_echoChannel = echoChannel;
148    initialize();
149  }
150
151  /**
152   * Destructor for the ultrasonic sensor. Delete the instance of the ultrasonic sensor by freeing
153   * the allocated digital channels. If the system was in automatic mode (round-robin), then it is
154   * stopped, then started again after this sensor is removed (provided this wasn't the last
155   * sensor).
156   */
157  @Override
158  public synchronized void close() {
159    SendableRegistry.remove(this);
160    final boolean wasAutomaticMode = m_automaticEnabled;
161    setAutomaticMode(false);
162    if (m_allocatedChannels) {
163      if (m_pingChannel != null) {
164        m_pingChannel.close();
165      }
166      if (m_echoChannel != null) {
167        m_echoChannel.close();
168      }
169    }
170
171    if (m_counter != null) {
172      m_counter.close();
173      m_counter = null;
174    }
175
176    m_pingChannel = null;
177    m_echoChannel = null;
178    synchronized (m_sensors) {
179      m_sensors.remove(this);
180    }
181    if (!m_sensors.isEmpty() && wasAutomaticMode) {
182      setAutomaticMode(true);
183    }
184
185    if (m_simDevice != null) {
186      m_simDevice.close();
187      m_simDevice = null;
188    }
189  }
190
191  /**
192   * Turn Automatic mode on/off for all sensors.
193   *
194   * <p>When in Automatic mode, all sensors will fire in round-robin, waiting a set time between
195   * each sensor.
196   *
197   * @param enabling Set to true if round-robin scheduling should start for all the ultrasonic
198   *     sensors. This scheduling method assures that the sensors are non-interfering because no two
199   *     sensors fire at the same time. If another scheduling algorithm is preferred, it can be
200   *     implemented by pinging the sensors manually and waiting for the results to come back.
201   */
202  public static synchronized void setAutomaticMode(boolean enabling) {
203    if (enabling == m_automaticEnabled) {
204      return; // ignore the case of no change
205    }
206    m_automaticEnabled = enabling;
207
208    if (enabling) {
209      /* Clear all the counters so no data is valid. No synchronization is
210       * needed because the background task is stopped.
211       */
212      for (Ultrasonic u : m_sensors) {
213        u.m_counter.reset();
214      }
215
216      // Start round robin task
217      m_task = new UltrasonicChecker();
218      m_task.start();
219    } else {
220      if (m_task != null) {
221        // Wait for background task to stop running
222        try {
223          m_task.join();
224          m_task = null;
225        } catch (InterruptedException ex) {
226          Thread.currentThread().interrupt();
227          ex.printStackTrace();
228        }
229      }
230
231      /* Clear all the counters (data now invalid) since automatic mode is
232       * disabled. No synchronization is needed because the background task is
233       * stopped.
234       */
235      for (Ultrasonic u : m_sensors) {
236        u.m_counter.reset();
237      }
238    }
239  }
240
241  /**
242   * Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only
243   * works if automatic (round-robin) mode is disabled. A single ping is sent out, and the counter
244   * should count the semi-period when it comes in. The counter is reset to make the current value
245   * invalid.
246   */
247  public void ping() {
248    setAutomaticMode(false); // turn off automatic round-robin if pinging
249    // single sensor
250    m_counter.reset(); // reset the counter to zero (invalid data now)
251    // do the ping to start getting a single range
252    m_pingChannel.pulse(kPingTime);
253  }
254
255  /**
256   * Check if there is a valid range measurement. The ranges are accumulated in a counter that will
257   * increment on each edge of the echo (return) signal. If the count is not at least 2, then the
258   * range has not yet been measured, and is invalid.
259   *
260   * @return true if the range is valid
261   */
262  public boolean isRangeValid() {
263    if (m_simRangeValid != null) {
264      return m_simRangeValid.get();
265    }
266    return m_counter.get() > 1;
267  }
268
269  /**
270   * Get the range in inches from the ultrasonic sensor. If there is no valid value yet, i.e. at
271   * least one measurement hasn't completed, then return 0.
272   *
273   * @return double Range in inches of the target returned from the ultrasonic sensor.
274   */
275  public double getRangeInches() {
276    if (isRangeValid()) {
277      if (m_simRange != null) {
278        return m_simRange.get();
279      }
280      return m_counter.getPeriod() * kSpeedOfSoundInchesPerSec / 2.0;
281    } else {
282      return 0;
283    }
284  }
285
286  /**
287   * Get the range in millimeters from the ultrasonic sensor. If there is no valid value yet, i.e.
288   * at least one measurement hasn't completed, then return 0.
289   *
290   * @return double Range in millimeters of the target returned by the ultrasonic sensor.
291   */
292  public double getRangeMM() {
293    return getRangeInches() * 25.4;
294  }
295
296  /**
297   * Is the ultrasonic enabled.
298   *
299   * @return true if the ultrasonic is enabled
300   */
301  public boolean isEnabled() {
302    return m_enabled;
303  }
304
305  /**
306   * Set if the ultrasonic is enabled.
307   *
308   * @param enable set to true to enable the ultrasonic
309   */
310  public void setEnabled(boolean enable) {
311    m_enabled = enable;
312  }
313
314  @Override
315  public void initSendable(SendableBuilder builder) {
316    builder.setSmartDashboardType("Ultrasonic");
317    builder.addDoubleProperty("Value", this::getRangeInches, null);
318  }
319}