001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.geometry; 006 007import com.fasterxml.jackson.annotation.JsonAutoDetect; 008import com.fasterxml.jackson.annotation.JsonCreator; 009import com.fasterxml.jackson.annotation.JsonIgnoreProperties; 010import com.fasterxml.jackson.annotation.JsonProperty; 011import edu.wpi.first.math.MatBuilder; 012import edu.wpi.first.math.MathSharedStore; 013import edu.wpi.first.math.MathUtil; 014import edu.wpi.first.math.Matrix; 015import edu.wpi.first.math.Nat; 016import edu.wpi.first.math.VecBuilder; 017import edu.wpi.first.math.Vector; 018import edu.wpi.first.math.interpolation.Interpolatable; 019import edu.wpi.first.math.numbers.N3; 020import java.util.Objects; 021import org.ejml.dense.row.factory.DecompositionFactory_DDRM; 022 023/** A rotation in a 3D coordinate frame represented by a quaternion. */ 024@JsonIgnoreProperties(ignoreUnknown = true) 025@JsonAutoDetect(getterVisibility = JsonAutoDetect.Visibility.NONE) 026public class Rotation3d implements Interpolatable<Rotation3d> { 027 private Quaternion m_q = new Quaternion(); 028 029 /** Constructs a Rotation3d with a default angle of 0 degrees. */ 030 public Rotation3d() {} 031 032 /** 033 * Constructs a Rotation3d from a quaternion. 034 * 035 * @param q The quaternion. 036 */ 037 @JsonCreator 038 public Rotation3d(@JsonProperty(required = true, value = "quaternion") Quaternion q) { 039 m_q = q.normalize(); 040 } 041 042 /** 043 * Constructs a Rotation3d from extrinsic roll, pitch, and yaw. 044 * 045 * <p>Extrinsic rotations occur in that order around the axes in the fixed global frame rather 046 * than the body frame. 047 * 048 * <p>Angles are measured counterclockwise with the rotation axis pointing "out of the page". If 049 * you point your right thumb along the positive axis direction, your fingers curl in the 050 * direction of positive rotation. 051 * 052 * @param roll The counterclockwise rotation angle around the X axis (roll) in radians. 053 * @param pitch The counterclockwise rotation angle around the Y axis (pitch) in radians. 054 * @param yaw The counterclockwise rotation angle around the Z axis (yaw) in radians. 055 */ 056 public Rotation3d(double roll, double pitch, double yaw) { 057 // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Euler_angles_to_quaternion_conversion 058 double cr = Math.cos(roll * 0.5); 059 double sr = Math.sin(roll * 0.5); 060 061 double cp = Math.cos(pitch * 0.5); 062 double sp = Math.sin(pitch * 0.5); 063 064 double cy = Math.cos(yaw * 0.5); 065 double sy = Math.sin(yaw * 0.5); 066 067 m_q = 068 new Quaternion( 069 cr * cp * cy + sr * sp * sy, 070 sr * cp * cy - cr * sp * sy, 071 cr * sp * cy + sr * cp * sy, 072 cr * cp * sy - sr * sp * cy); 073 } 074 075 /** 076 * Constructs a Rotation3d with the given rotation vector representation. This representation is 077 * equivalent to axis-angle, where the normalized axis is multiplied by the rotation around the 078 * axis in radians. 079 * 080 * @param rvec The rotation vector. 081 */ 082 public Rotation3d(Vector<N3> rvec) { 083 this(rvec, rvec.norm()); 084 } 085 086 /** 087 * Constructs a Rotation3d with the given axis-angle representation. The axis doesn't have to be 088 * normalized. 089 * 090 * @param axis The rotation axis. 091 * @param angleRadians The rotation around the axis in radians. 092 */ 093 public Rotation3d(Vector<N3> axis, double angleRadians) { 094 double norm = axis.norm(); 095 if (norm == 0.0) { 096 return; 097 } 098 099 // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Definition 100 var v = axis.times(1.0 / norm).times(Math.sin(angleRadians / 2.0)); 101 m_q = new Quaternion(Math.cos(angleRadians / 2.0), v.get(0, 0), v.get(1, 0), v.get(2, 0)); 102 } 103 104 /** 105 * Constructs a Rotation3d from a rotation matrix. 106 * 107 * @param rotationMatrix The rotation matrix. 108 * @throws IllegalArgumentException if the rotation matrix isn't special orthogonal. 109 */ 110 public Rotation3d(Matrix<N3, N3> rotationMatrix) { 111 final var R = rotationMatrix; 112 113 // Require that the rotation matrix is special orthogonal. This is true if 114 // the matrix is orthogonal (RRᵀ = I) and normalized (determinant is 1). 115 if (R.times(R.transpose()).minus(Matrix.eye(Nat.N3())).normF() > 1e-9) { 116 var builder = new StringBuilder("Rotation matrix isn't orthogonal\n\nR =\n"); 117 builder.append(R.getStorage().toString()).append('\n'); 118 119 var msg = builder.toString(); 120 MathSharedStore.reportError(msg, Thread.currentThread().getStackTrace()); 121 throw new IllegalArgumentException(msg); 122 } 123 if (Math.abs(R.det() - 1.0) > 1e-9) { 124 var builder = 125 new StringBuilder("Rotation matrix is orthogonal but not special orthogonal\n\nR =\n"); 126 builder.append(R.getStorage().toString()).append('\n'); 127 128 var msg = builder.toString(); 129 MathSharedStore.reportError(msg, Thread.currentThread().getStackTrace()); 130 throw new IllegalArgumentException(msg); 131 } 132 133 // Turn rotation matrix into a quaternion 134 // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ 135 double trace = R.get(0, 0) + R.get(1, 1) + R.get(2, 2); 136 double w; 137 double x; 138 double y; 139 double z; 140 141 if (trace > 0.0) { 142 double s = 0.5 / Math.sqrt(trace + 1.0); 143 w = 0.25 / s; 144 x = (R.get(2, 1) - R.get(1, 2)) * s; 145 y = (R.get(0, 2) - R.get(2, 0)) * s; 146 z = (R.get(1, 0) - R.get(0, 1)) * s; 147 } else { 148 if (R.get(0, 0) > R.get(1, 1) && R.get(0, 0) > R.get(2, 2)) { 149 double s = 2.0 * Math.sqrt(1.0 + R.get(0, 0) - R.get(1, 1) - R.get(2, 2)); 150 w = (R.get(2, 1) - R.get(1, 2)) / s; 151 x = 0.25 * s; 152 y = (R.get(0, 1) + R.get(1, 0)) / s; 153 z = (R.get(0, 2) + R.get(2, 0)) / s; 154 } else if (R.get(1, 1) > R.get(2, 2)) { 155 double s = 2.0 * Math.sqrt(1.0 + R.get(1, 1) - R.get(0, 0) - R.get(2, 2)); 156 w = (R.get(0, 2) - R.get(2, 0)) / s; 157 x = (R.get(0, 1) + R.get(1, 0)) / s; 158 y = 0.25 * s; 159 z = (R.get(1, 2) + R.get(2, 1)) / s; 160 } else { 161 double s = 2.0 * Math.sqrt(1.0 + R.get(2, 2) - R.get(0, 0) - R.get(1, 1)); 162 w = (R.get(1, 0) - R.get(0, 1)) / s; 163 x = (R.get(0, 2) + R.get(2, 0)) / s; 164 y = (R.get(1, 2) + R.get(2, 1)) / s; 165 z = 0.25 * s; 166 } 167 } 168 169 m_q = new Quaternion(w, x, y, z); 170 } 171 172 /** 173 * Constructs a Rotation3d that rotates the initial vector onto the final vector. 174 * 175 * <p>This is useful for turning a 3D vector (final) into an orientation relative to a coordinate 176 * system vector (initial). 177 * 178 * @param initial The initial vector. 179 * @param last The final vector. 180 */ 181 public Rotation3d(Vector<N3> initial, Vector<N3> last) { 182 double dot = initial.dot(last); 183 double normProduct = initial.norm() * last.norm(); 184 double dotNorm = dot / normProduct; 185 186 if (dotNorm > 1.0 - 1E-9) { 187 // If the dot product is 1, the two vectors point in the same direction so 188 // there's no rotation. The default initialization of m_q will work. 189 return; 190 } else if (dotNorm < -1.0 + 1E-9) { 191 // If the dot product is -1, the two vectors point in opposite directions 192 // so a 180 degree rotation is required. Any orthogonal vector can be used 193 // for it. Q in the QR decomposition is an orthonormal basis, so it 194 // contains orthogonal unit vectors. 195 var X = 196 new MatBuilder<>(Nat.N3(), Nat.N1()) 197 .fill(initial.get(0, 0), initial.get(1, 0), initial.get(2, 0)); 198 final var qr = DecompositionFactory_DDRM.qr(3, 1); 199 qr.decompose(X.getStorage().getMatrix()); 200 final var Q = qr.getQ(null, false); 201 202 // w = cos(θ/2) = cos(90°) = 0 203 // 204 // For x, y, and z, we use the second column of Q because the first is 205 // parallel instead of orthogonal. The third column would also work. 206 m_q = new Quaternion(0.0, Q.get(0, 1), Q.get(1, 1), Q.get(2, 1)); 207 } else { 208 // initial x last 209 var axis = 210 VecBuilder.fill( 211 initial.get(1, 0) * last.get(2, 0) - last.get(1, 0) * initial.get(2, 0), 212 last.get(0, 0) * initial.get(2, 0) - initial.get(0, 0) * last.get(2, 0), 213 initial.get(0, 0) * last.get(1, 0) - last.get(0, 0) * initial.get(1, 0)); 214 215 // https://stackoverflow.com/a/11741520 216 m_q = 217 new Quaternion(normProduct + dot, axis.get(0, 0), axis.get(1, 0), axis.get(2, 0)) 218 .normalize(); 219 } 220 } 221 222 /** 223 * Adds two rotations together. 224 * 225 * @param other The rotation to add. 226 * @return The sum of the two rotations. 227 */ 228 public Rotation3d plus(Rotation3d other) { 229 return rotateBy(other); 230 } 231 232 /** 233 * Subtracts the new rotation from the current rotation and returns the new rotation. 234 * 235 * @param other The rotation to subtract. 236 * @return The difference between the two rotations. 237 */ 238 public Rotation3d minus(Rotation3d other) { 239 return rotateBy(other.unaryMinus()); 240 } 241 242 /** 243 * Takes the inverse of the current rotation. 244 * 245 * @return The inverse of the current rotation. 246 */ 247 public Rotation3d unaryMinus() { 248 return new Rotation3d(m_q.inverse()); 249 } 250 251 /** 252 * Multiplies the current rotation by a scalar. 253 * 254 * @param scalar The scalar. 255 * @return The new scaled Rotation3d. 256 */ 257 public Rotation3d times(double scalar) { 258 // https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp 259 if (m_q.getW() >= 0.0) { 260 return new Rotation3d( 261 VecBuilder.fill(m_q.getX(), m_q.getY(), m_q.getZ()), 262 2.0 * scalar * Math.acos(m_q.getW())); 263 } else { 264 return new Rotation3d( 265 VecBuilder.fill(-m_q.getX(), -m_q.getY(), -m_q.getZ()), 266 2.0 * scalar * Math.acos(-m_q.getW())); 267 } 268 } 269 270 /** 271 * Divides the current rotation by a scalar. 272 * 273 * @param scalar The scalar. 274 * @return The new scaled Rotation3d. 275 */ 276 public Rotation3d div(double scalar) { 277 return times(1.0 / scalar); 278 } 279 280 /** 281 * Adds the new rotation to the current rotation. 282 * 283 * @param other The rotation to rotate by. 284 * @return The new rotated Rotation3d. 285 */ 286 public Rotation3d rotateBy(Rotation3d other) { 287 return new Rotation3d(other.m_q.times(m_q)); 288 } 289 290 /** 291 * Returns the quaternion representation of the Rotation3d. 292 * 293 * @return The quaternion representation of the Rotation3d. 294 */ 295 @JsonProperty(value = "quaternion") 296 public Quaternion getQuaternion() { 297 return m_q; 298 } 299 300 /** 301 * Returns the counterclockwise rotation angle around the X axis (roll) in radians. 302 * 303 * @return The counterclockwise rotation angle around the X axis (roll) in radians. 304 */ 305 public double getX() { 306 final var w = m_q.getW(); 307 final var x = m_q.getX(); 308 final var y = m_q.getY(); 309 final var z = m_q.getZ(); 310 311 // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion 312 return Math.atan2(2.0 * (w * x + y * z), 1.0 - 2.0 * (x * x + y * y)); 313 } 314 315 /** 316 * Returns the counterclockwise rotation angle around the Y axis (pitch) in radians. 317 * 318 * @return The counterclockwise rotation angle around the Y axis (pitch) in radians. 319 */ 320 public double getY() { 321 final var w = m_q.getW(); 322 final var x = m_q.getX(); 323 final var y = m_q.getY(); 324 final var z = m_q.getZ(); 325 326 // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion 327 double ratio = 2.0 * (w * y - z * x); 328 if (Math.abs(ratio) >= 1.0) { 329 return Math.copySign(Math.PI / 2.0, ratio); 330 } else { 331 return Math.asin(ratio); 332 } 333 } 334 335 /** 336 * Returns the counterclockwise rotation angle around the Z axis (yaw) in radians. 337 * 338 * @return The counterclockwise rotation angle around the Z axis (yaw) in radians. 339 */ 340 public double getZ() { 341 final var w = m_q.getW(); 342 final var x = m_q.getX(); 343 final var y = m_q.getY(); 344 final var z = m_q.getZ(); 345 346 // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion 347 return Math.atan2(2.0 * (w * z + x * y), 1.0 - 2.0 * (y * y + z * z)); 348 } 349 350 /** 351 * Returns the axis in the axis-angle representation of this rotation. 352 * 353 * @return The axis in the axis-angle representation. 354 */ 355 public Vector<N3> getAxis() { 356 double norm = 357 Math.sqrt(m_q.getX() * m_q.getX() + m_q.getY() * m_q.getY() + m_q.getZ() * m_q.getZ()); 358 if (norm == 0.0) { 359 return VecBuilder.fill(0.0, 0.0, 0.0); 360 } else { 361 return VecBuilder.fill(m_q.getX() / norm, m_q.getY() / norm, m_q.getZ() / norm); 362 } 363 } 364 365 /** 366 * Returns the angle in radians in the axis-angle representation of this rotation. 367 * 368 * @return The angle in radians in the axis-angle representation of this rotation. 369 */ 370 public double getAngle() { 371 double norm = 372 Math.sqrt(m_q.getX() * m_q.getX() + m_q.getY() * m_q.getY() + m_q.getZ() * m_q.getZ()); 373 return 2.0 * Math.atan2(norm, m_q.getW()); 374 } 375 376 /** 377 * Returns a Rotation2d representing this Rotation3d projected into the X-Y plane. 378 * 379 * @return A Rotation2d representing this Rotation3d projected into the X-Y plane. 380 */ 381 public Rotation2d toRotation2d() { 382 return new Rotation2d(getZ()); 383 } 384 385 @Override 386 public String toString() { 387 return String.format("Rotation3d(%s)", m_q); 388 } 389 390 /** 391 * Checks equality between this Rotation3d and another object. 392 * 393 * @param obj The other object. 394 * @return Whether the two objects are equal or not. 395 */ 396 @Override 397 public boolean equals(Object obj) { 398 if (obj instanceof Rotation3d) { 399 var other = (Rotation3d) obj; 400 return m_q.equals(other.m_q); 401 } 402 return false; 403 } 404 405 @Override 406 public int hashCode() { 407 return Objects.hash(m_q); 408 } 409 410 @Override 411 public Rotation3d interpolate(Rotation3d endValue, double t) { 412 return plus(endValue.minus(this).times(MathUtil.clamp(t, 0, 1))); 413 } 414}