001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.estimator; 006 007import edu.wpi.first.math.Matrix; 008import edu.wpi.first.math.Nat; 009import edu.wpi.first.math.Num; 010import edu.wpi.first.math.numbers.N1; 011import org.ejml.simple.SimpleMatrix; 012 013/** 014 * Generates sigma points and weights according to Van der Merwe's 2004 dissertation[1] for the 015 * UnscentedKalmanFilter class. 016 * 017 * <p>It parametrizes the sigma points using alpha, beta, kappa terms, and is the version seen in 018 * most publications. Unless you know better, this should be your default choice. 019 * 020 * <p>States is the dimensionality of the state. 2*States+1 weights will be generated. 021 * 022 * <p>[1] R. Van der Merwe "Sigma-Point Kalman Filters for Probabilitic Inference in Dynamic 023 * State-Space Models" (Doctoral dissertation) 024 */ 025public class MerweScaledSigmaPoints<S extends Num> { 026 private final double m_alpha; 027 private final int m_kappa; 028 private final Nat<S> m_states; 029 private Matrix<?, N1> m_wm; 030 private Matrix<?, N1> m_wc; 031 032 /** 033 * Constructs a generator for Van der Merwe scaled sigma points. 034 * 035 * @param states an instance of Num that represents the number of states. 036 * @param alpha Determines the spread of the sigma points around the mean. Usually a small 037 * positive value (1e-3). 038 * @param beta Incorporates prior knowledge of the distribution of the mean. For Gaussian 039 * distributions, beta = 2 is optimal. 040 * @param kappa Secondary scaling parameter usually set to 0 or 3 - States. 041 */ 042 public MerweScaledSigmaPoints(Nat<S> states, double alpha, double beta, int kappa) { 043 this.m_states = states; 044 this.m_alpha = alpha; 045 this.m_kappa = kappa; 046 047 computeWeights(beta); 048 } 049 050 /** 051 * Constructs a generator for Van der Merwe scaled sigma points with default values for alpha, 052 * beta, and kappa. 053 * 054 * @param states an instance of Num that represents the number of states. 055 */ 056 public MerweScaledSigmaPoints(Nat<S> states) { 057 this(states, 1e-3, 2, 3 - states.getNum()); 058 } 059 060 /** 061 * Returns number of sigma points for each variable in the state x. 062 * 063 * @return The number of sigma points for each variable in the state x. 064 */ 065 public int getNumSigmas() { 066 return 2 * m_states.getNum() + 1; 067 } 068 069 /** 070 * Computes the sigma points for an unscented Kalman filter given the mean (x) and covariance(P) 071 * of the filter. 072 * 073 * @param x An array of the means. 074 * @param s Square-root covariance of the filter. 075 * @return Two-dimensional array of sigma points. Each column contains all the sigmas for one 076 * dimension in the problem space. Ordered by Xi_0, Xi_{1..n}, Xi_{n+1..2n}. 077 */ 078 public Matrix<S, ?> squareRootSigmaPoints(Matrix<S, N1> x, Matrix<S, S> s) { 079 double lambda = Math.pow(m_alpha, 2) * (m_states.getNum() + m_kappa) - m_states.getNum(); 080 double eta = Math.sqrt(lambda + m_states.getNum()); 081 082 Matrix<S, S> U = s.times(eta); 083 084 // 2 * states + 1 by states 085 Matrix<S, ?> sigmas = 086 new Matrix<>(new SimpleMatrix(m_states.getNum(), 2 * m_states.getNum() + 1)); 087 sigmas.setColumn(0, x); 088 for (int k = 0; k < m_states.getNum(); k++) { 089 var xPlusU = x.plus(U.extractColumnVector(k)); 090 var xMinusU = x.minus(U.extractColumnVector(k)); 091 sigmas.setColumn(k + 1, xPlusU); 092 sigmas.setColumn(m_states.getNum() + k + 1, xMinusU); 093 } 094 095 return new Matrix<>(sigmas); 096 } 097 098 /** 099 * Computes the weights for the scaled unscented Kalman filter. 100 * 101 * @param beta Incorporates prior knowledge of the distribution of the mean. 102 */ 103 private void computeWeights(double beta) { 104 double lambda = Math.pow(m_alpha, 2) * (m_states.getNum() + m_kappa) - m_states.getNum(); 105 double c = 0.5 / (m_states.getNum() + lambda); 106 107 Matrix<?, N1> wM = new Matrix<>(new SimpleMatrix(2 * m_states.getNum() + 1, 1)); 108 Matrix<?, N1> wC = new Matrix<>(new SimpleMatrix(2 * m_states.getNum() + 1, 1)); 109 wM.fill(c); 110 wC.fill(c); 111 112 wM.set(0, 0, lambda / (m_states.getNum() + lambda)); 113 wC.set(0, 0, lambda / (m_states.getNum() + lambda) + (1 - Math.pow(m_alpha, 2) + beta)); 114 115 this.m_wm = wM; 116 this.m_wc = wC; 117 } 118 119 /** 120 * Returns the weight for each sigma point for the mean. 121 * 122 * @return the weight for each sigma point for the mean. 123 */ 124 public Matrix<?, N1> getWm() { 125 return m_wm; 126 } 127 128 /** 129 * Returns an element of the weight for each sigma point for the mean. 130 * 131 * @param element Element of vector to return. 132 * @return the element i's weight for the mean. 133 */ 134 public double getWm(int element) { 135 return m_wm.get(element, 0); 136 } 137 138 /** 139 * Returns the weight for each sigma point for the covariance. 140 * 141 * @return the weight for each sigma point for the covariance. 142 */ 143 public Matrix<?, N1> getWc() { 144 return m_wc; 145 } 146 147 /** 148 * Returns an element of the weight for each sigma point for the covariance. 149 * 150 * @param element Element of vector to return. 151 * @return The element I's weight for the covariance. 152 */ 153 public double getWc(int element) { 154 return m_wc.get(element, 0); 155 } 156}