001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.math;
006
007import edu.wpi.first.math.geometry.Pose2d;
008import edu.wpi.first.math.numbers.N1;
009import edu.wpi.first.math.numbers.N3;
010import edu.wpi.first.math.numbers.N4;
011import java.util.Random;
012import org.ejml.simple.SimpleMatrix;
013
014public final class StateSpaceUtil {
015  private static Random rand = new Random();
016
017  private StateSpaceUtil() {
018    // Utility class
019  }
020
021  /**
022   * Creates a covariance matrix from the given vector for use with Kalman filters.
023   *
024   * <p>Each element is squared and placed on the covariance matrix diagonal.
025   *
026   * @param <States> Num representing the states of the system.
027   * @param states A Nat representing the states of the system.
028   * @param stdDevs For a Q matrix, its elements are the standard deviations of each state from how
029   *     the model behaves. For an R matrix, its elements are the standard deviations for each
030   *     output measurement.
031   * @return Process noise or measurement noise covariance matrix.
032   */
033  public static <States extends Num> Matrix<States, States> makeCovarianceMatrix(
034      Nat<States> states, Matrix<States, N1> stdDevs) {
035    var result = new Matrix<>(states, states);
036    for (int i = 0; i < states.getNum(); i++) {
037      result.set(i, i, Math.pow(stdDevs.get(i, 0), 2));
038    }
039    return result;
040  }
041
042  /**
043   * Creates a vector of normally distributed white noise with the given noise intensities for each
044   * element.
045   *
046   * @param <N> Num representing the dimensionality of the noise vector to create.
047   * @param stdDevs A matrix whose elements are the standard deviations of each element of the noise
048   *     vector.
049   * @return White noise vector.
050   */
051  public static <N extends Num> Matrix<N, N1> makeWhiteNoiseVector(Matrix<N, N1> stdDevs) {
052    Matrix<N, N1> result = new Matrix<>(new SimpleMatrix(stdDevs.getNumRows(), 1));
053    for (int i = 0; i < stdDevs.getNumRows(); i++) {
054      result.set(i, 0, rand.nextGaussian() * stdDevs.get(i, 0));
055    }
056    return result;
057  }
058
059  /**
060   * Creates a cost matrix from the given vector for use with LQR.
061   *
062   * <p>The cost matrix is constructed using Bryson's rule. The inverse square of each tolerance is
063   * placed on the cost matrix diagonal. If a tolerance is infinity, its cost matrix entry is set to
064   * zero.
065   *
066   * @param <Elements> Nat representing the number of system states or inputs.
067   * @param tolerances An array. For a Q matrix, its elements are the maximum allowed excursions of
068   *     the states from the reference. For an R matrix, its elements are the maximum allowed
069   *     excursions of the control inputs from no actuation.
070   * @return State excursion or control effort cost matrix.
071   */
072  public static <Elements extends Num> Matrix<Elements, Elements> makeCostMatrix(
073      Matrix<Elements, N1> tolerances) {
074    Matrix<Elements, Elements> result =
075        new Matrix<>(new SimpleMatrix(tolerances.getNumRows(), tolerances.getNumRows()));
076    result.fill(0.0);
077
078    for (int i = 0; i < tolerances.getNumRows(); i++) {
079      if (tolerances.get(i, 0) == Double.POSITIVE_INFINITY) {
080        result.set(i, i, 0.0);
081      } else {
082        result.set(i, i, 1.0 / (Math.pow(tolerances.get(i, 0), 2)));
083      }
084    }
085
086    return result;
087  }
088
089  /**
090   * Returns true if (A, B) is a stabilizable pair.
091   *
092   * <p>(A, B) is stabilizable if and only if the uncontrollable eigenvalues of A, if any, have
093   * absolute values less than one, where an eigenvalue is uncontrollable if rank(λI - A, B) %3C n
094   * where n is the number of states.
095   *
096   * @param <States> Num representing the size of A.
097   * @param <Inputs> Num representing the columns of B.
098   * @param A System matrix.
099   * @param B Input matrix.
100   * @return If the system is stabilizable.
101   */
102  public static <States extends Num, Inputs extends Num> boolean isStabilizable(
103      Matrix<States, States> A, Matrix<States, Inputs> B) {
104    return WPIMathJNI.isStabilizable(A.getNumRows(), B.getNumCols(), A.getData(), B.getData());
105  }
106
107  /**
108   * Returns true if (A, C) is a detectable pair.
109   *
110   * <p>(A, C) is detectable if and only if the unobservable eigenvalues of A, if any, have absolute
111   * values less than one, where an eigenvalue is unobservable if rank(λI - A; C) %3C n where n is
112   * the number of states.
113   *
114   * @param <States> Num representing the size of A.
115   * @param <Outputs> Num representing the rows of C.
116   * @param A System matrix.
117   * @param C Output matrix.
118   * @return If the system is detectable.
119   */
120  public static <States extends Num, Outputs extends Num> boolean isDetectable(
121      Matrix<States, States> A, Matrix<Outputs, States> C) {
122    return WPIMathJNI.isStabilizable(
123        A.getNumRows(), C.getNumRows(), A.transpose().getData(), C.transpose().getData());
124  }
125
126  /**
127   * Convert a {@link Pose2d} to a vector of [x, y, theta], where theta is in radians.
128   *
129   * @param pose A pose to convert to a vector.
130   * @return The given pose in vector form, with the third element, theta, in radians.
131   */
132  public static Matrix<N3, N1> poseToVector(Pose2d pose) {
133    return VecBuilder.fill(pose.getX(), pose.getY(), pose.getRotation().getRadians());
134  }
135
136  /**
137   * Clamp the input u to the min and max.
138   *
139   * @param u The input to clamp.
140   * @param umin The minimum input magnitude.
141   * @param umax The maximum input magnitude.
142   * @param <I> The number of inputs.
143   * @return The clamped input.
144   */
145  public static <I extends Num> Matrix<I, N1> clampInputMaxMagnitude(
146      Matrix<I, N1> u, Matrix<I, N1> umin, Matrix<I, N1> umax) {
147    var result = new Matrix<I, N1>(new SimpleMatrix(u.getNumRows(), 1));
148    for (int i = 0; i < u.getNumRows(); i++) {
149      result.set(i, 0, MathUtil.clamp(u.get(i, 0), umin.get(i, 0), umax.get(i, 0)));
150    }
151    return result;
152  }
153
154  /**
155   * Renormalize all inputs if any exceeds the maximum magnitude. Useful for systems such as
156   * differential drivetrains.
157   *
158   * @param u The input vector.
159   * @param maxMagnitude The maximum magnitude any input can have.
160   * @param <I> The number of inputs.
161   * @return The normalizedInput
162   */
163  public static <I extends Num> Matrix<I, N1> desaturateInputVector(
164      Matrix<I, N1> u, double maxMagnitude) {
165    double maxValue = u.maxAbs();
166    boolean isCapped = maxValue > maxMagnitude;
167
168    if (isCapped) {
169      return u.times(maxMagnitude / maxValue);
170    }
171    return u;
172  }
173
174  /**
175   * Convert a {@link Pose2d} to a vector of [x, y, cos(theta), sin(theta)], where theta is in
176   * radians.
177   *
178   * @param pose A pose to convert to a vector.
179   * @return The given pose in as a 4x1 vector of x, y, cos(theta), and sin(theta).
180   */
181  public static Matrix<N4, N1> poseTo4dVector(Pose2d pose) {
182    return VecBuilder.fill(
183        pose.getTranslation().getX(),
184        pose.getTranslation().getY(),
185        pose.getRotation().getCos(),
186        pose.getRotation().getSin());
187  }
188
189  /**
190   * Convert a {@link Pose2d} to a vector of [x, y, theta], where theta is in radians.
191   *
192   * @param pose A pose to convert to a vector.
193   * @return The given pose in vector form, with the third element, theta, in radians.
194   */
195  public static Matrix<N3, N1> poseTo3dVector(Pose2d pose) {
196    return VecBuilder.fill(
197        pose.getTranslation().getX(),
198        pose.getTranslation().getY(),
199        pose.getRotation().getRadians());
200  }
201}