WPILibC++ 2023.4.3-108-ge5452e3
TriangularSolverMatrix.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
11#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17// if the rhs is row major, let's transpose the product
18template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherInnerStride>
19struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor,OtherInnerStride>
20{
21 static void run(
22 Index size, Index cols,
23 const Scalar* tri, Index triStride,
24 Scalar* _other, Index otherIncr, Index otherStride,
26 {
28 Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
29 (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
31 TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor, OtherInnerStride>
32 ::run(size, cols, tri, triStride, _other, otherIncr, otherStride, blocking);
33 }
34};
35
36/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
37 */
38template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder,int OtherInnerStride>
39struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor,OtherInnerStride>
40{
41 static EIGEN_DONT_INLINE void run(
42 Index size, Index otherSize,
43 const Scalar* _tri, Index triStride,
44 Scalar* _other, Index otherIncr, Index otherStride,
46};
47template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder, int OtherInnerStride>
49 Index size, Index otherSize,
50 const Scalar* _tri, Index triStride,
51 Scalar* _other, Index otherIncr, Index otherStride,
53 {
54 Index cols = otherSize;
55
58 TriMapper tri(_tri, triStride);
59 OtherMapper other(_other, otherStride, otherIncr);
60
61 typedef gebp_traits<Scalar,Scalar> Traits;
62
63 enum {
64 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
65 IsLower = (Mode&Lower) == Lower
66 };
67
68 Index kc = blocking.kc(); // cache block size along the K direction
69 Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction
70
71 std::size_t sizeA = kc*mc;
72 std::size_t sizeB = kc*cols;
73
74 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
75 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
76
81
82 // the goal here is to subdivise the Rhs panels such that we keep some cache
83 // coherence when accessing the rhs elements
84 std::ptrdiff_t l1, l2, l3;
85 manage_caching_sizes(GetAction, &l1, &l2, &l3);
86 Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max<Index>(otherStride,size)) : 0;
87 subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
88
89 for(Index k2=IsLower ? 0 : size;
90 IsLower ? k2<size : k2>0;
91 IsLower ? k2+=kc : k2-=kc)
92 {
93 const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
94
95 // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
96 // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
97 // A11 (the triangular part) and A21 the remaining rectangular part.
98 // Then the high level algorithm is:
99 // - B = R1 => general block copy (done during the next step)
100 // - R1 = A11^-1 B => tricky part
101 // - update B from the new R1 => actually this has to be performed continuously during the above step
102 // - R2 -= A21 * B => GEPP
103
104 // The tricky part: compute R1 = A11^-1 B while updating B from R1
105 // The idea is to split A11 into multiple small vertical panels.
106 // Each panel can be split into a small triangular part T1k which is processed without optimization,
107 // and the remaining small part T2k which is processed using gebp with appropriate block strides
108 for(Index j2=0; j2<cols; j2+=subcols)
109 {
110 Index actual_cols = (std::min)(cols-j2,subcols);
111 // for each small vertical panels [T1k^T, T2k^T]^T of lhs
112 for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
113 {
114 Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
115 // tr solve
116 for (Index k=0; k<actualPanelWidth; ++k)
117 {
118 // TODO write a small kernel handling this (can be shared with trsv)
119 Index i = IsLower ? k2+k1+k : k2-k1-k-1;
120 Index rs = actualPanelWidth - k - 1; // remaining size
121 Index s = TriStorageOrder==RowMajor ? (IsLower ? k2+k1 : i+1)
122 : IsLower ? i+1 : i-rs;
123
124 Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
125 for (Index j=j2; j<j2+actual_cols; ++j)
126 {
127 if (TriStorageOrder==RowMajor)
128 {
129 Scalar b(0);
130 const Scalar* l = &tri(i,s);
131 typename OtherMapper::LinearMapper r = other.getLinearMapper(s,j);
132 for (Index i3=0; i3<k; ++i3)
133 b += conj(l[i3]) * r(i3);
134
135 other(i,j) = (other(i,j) - b)*a;
136 }
137 else
138 {
139 Scalar& otherij = other(i,j);
140 otherij *= a;
141 Scalar b = otherij;
142 typename OtherMapper::LinearMapper r = other.getLinearMapper(s,j);
143 typename TriMapper::LinearMapper l = tri.getLinearMapper(s,i);
144 for (Index i3=0;i3<rs;++i3)
145 r(i3) -= b * conj(l(i3));
146 }
147 }
148 }
149
150 Index lengthTarget = actual_kc-k1-actualPanelWidth;
151 Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
152 Index blockBOffset = IsLower ? k1 : lengthTarget;
153
154 // update the respective rows of B from other
155 pack_rhs(blockB+actual_kc*j2, other.getSubMapper(startBlock,j2), actualPanelWidth, actual_cols, actual_kc, blockBOffset);
156
157 // GEBP
158 if (lengthTarget>0)
159 {
160 Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
161
162 pack_lhs(blockA, tri.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget);
163
164 gebp_kernel(other.getSubMapper(startTarget,j2), blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
165 actualPanelWidth, actual_kc, 0, blockBOffset);
166 }
167 }
168 }
169
170 // R2 -= A21 * B => GEPP
171 {
172 Index start = IsLower ? k2+kc : 0;
173 Index end = IsLower ? size : k2-kc;
174 for(Index i2=start; i2<end; i2+=mc)
175 {
176 const Index actual_mc = (std::min)(mc,end-i2);
177 if (actual_mc>0)
178 {
179 pack_lhs(blockA, tri.getSubMapper(i2, IsLower ? k2 : k2-kc), actual_kc, actual_mc);
180
181 gebp_kernel(other.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0);
182 }
183 }
184 }
185 }
186 }
187
188/* Optimized triangular solver with multiple left hand sides and the triangular matrix on the right
189 */
190template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder, int OtherInnerStride>
191struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor,OtherInnerStride>
192{
193 static EIGEN_DONT_INLINE void run(
194 Index size, Index otherSize,
195 const Scalar* _tri, Index triStride,
196 Scalar* _other, Index otherIncr, Index otherStride,
198};
199template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder, int OtherInnerStride>
201 Index size, Index otherSize,
202 const Scalar* _tri, Index triStride,
203 Scalar* _other, Index otherIncr, Index otherStride,
205 {
206 Index rows = otherSize;
207 typedef typename NumTraits<Scalar>::Real RealScalar;
208
211 LhsMapper lhs(_other, otherStride, otherIncr);
212 RhsMapper rhs(_tri, triStride);
213
214 typedef gebp_traits<Scalar,Scalar> Traits;
215 enum {
216 RhsStorageOrder = TriStorageOrder,
217 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
218 IsLower = (Mode&Lower) == Lower
219 };
220
221 Index kc = blocking.kc(); // cache block size along the K direction
222 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
223
224 std::size_t sizeA = kc*mc;
225 std::size_t sizeB = kc*size;
226
227 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
228 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
229
235
236 for(Index k2=IsLower ? size : 0;
237 IsLower ? k2>0 : k2<size;
238 IsLower ? k2-=kc : k2+=kc)
239 {
240 const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
241 Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
242
243 Index startPanel = IsLower ? 0 : k2+actual_kc;
244 Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
245 Scalar* geb = blockB+actual_kc*actual_kc;
246
247 if (rs>0) pack_rhs(geb, rhs.getSubMapper(actual_k2,startPanel), actual_kc, rs);
248
249 // triangular packing (we only pack the panels off the diagonal,
250 // neglecting the blocks overlapping the diagonal
251 {
252 for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
253 {
254 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
255 Index actual_j2 = actual_k2 + j2;
256 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
257 Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
258
259 if (panelLength>0)
260 pack_rhs_panel(blockB+j2*actual_kc,
261 rhs.getSubMapper(actual_k2+panelOffset, actual_j2),
262 panelLength, actualPanelWidth,
263 actual_kc, panelOffset);
264 }
265 }
266
267 for(Index i2=0; i2<rows; i2+=mc)
268 {
269 const Index actual_mc = (std::min)(mc,rows-i2);
270
271 // triangular solver kernel
272 {
273 // for each small block of the diagonal (=> vertical panels of rhs)
274 for (Index j2 = IsLower
275 ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
276 : Index(SmallPanelWidth)))
277 : 0;
278 IsLower ? j2>=0 : j2<actual_kc;
279 IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
280 {
281 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
282 Index absolute_j2 = actual_k2 + j2;
283 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
284 Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
285
286 // GEBP
287 if(panelLength>0)
288 {
289 gebp_kernel(lhs.getSubMapper(i2,absolute_j2),
290 blockA, blockB+j2*actual_kc,
291 actual_mc, panelLength, actualPanelWidth,
292 Scalar(-1),
293 actual_kc, actual_kc, // strides
294 panelOffset, panelOffset); // offsets
295 }
296
297 // unblocked triangular solve
298 for (Index k=0; k<actualPanelWidth; ++k)
299 {
300 Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
301
302 typename LhsMapper::LinearMapper r = lhs.getLinearMapper(i2,j);
303 for (Index k3=0; k3<k; ++k3)
304 {
305 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
306 typename LhsMapper::LinearMapper a = lhs.getLinearMapper(i2,IsLower ? j+1+k3 : absolute_j2+k3);
307 for (Index i=0; i<actual_mc; ++i)
308 r(i) -= a(i) * b;
309 }
310 if((Mode & UnitDiag)==0)
311 {
312 Scalar inv_rjj = RealScalar(1)/conj(rhs(j,j));
313 for (Index i=0; i<actual_mc; ++i)
314 r(i) *= inv_rjj;
315 }
316 }
317
318 // pack the just computed part of lhs to A
319 pack_lhs_panel(blockA, lhs.getSubMapper(i2,absolute_j2),
320 actualPanelWidth, actual_mc,
321 actual_kc, j2);
322 }
323 }
324
325 if (rs>0)
326 gebp_kernel(lhs.getSubMapper(i2, startPanel), blockA, geb,
327 actual_mc, actual_kc, rs, Scalar(-1),
328 -1, -1, 0, 0);
329 }
330 }
331 }
332
333} // end namespace internal
334
335} // end namespace Eigen
336
337#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
#define EIGEN_PLAIN_ENUM_MAX(a, b)
Definition: Macros.h:1299
#define EIGEN_DONT_INLINE
Definition: Macros.h:950
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
Definition: Memory.h:768
Definition: ForwardDeclarations.h:87
Definition: BlasUtil.h:270
Definition: BlasUtil.h:389
Definition: GeneralBlockPanelKernel.h:419
Definition: GeneralMatrixMatrix.h:252
RhsScalar * blockB()
Definition: GeneralMatrixMatrix.h:275
Index kc() const
Definition: GeneralMatrixMatrix.h:272
Index mc() const
Definition: GeneralMatrixMatrix.h:270
LhsScalar * blockA()
Definition: GeneralMatrixMatrix.h:274
@ UnitDiag
Matrix has ones on the diagonal; to be used in combination with Lower or Upper.
Definition: Constants.h:213
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:319
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:321
@ OnTheLeft
Apply transformation on the left.
Definition: Constants.h:332
@ OnTheRight
Apply transformation on the right.
Definition: Constants.h:334
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
void manage_caching_sizes(Action action, std::ptrdiff_t *l1, std::ptrdiff_t *l2, std::ptrdiff_t *l3)
Definition: GeneralBlockPanelKernel.h:86
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
static EIGEN_DEPRECATED const end_t end
Definition: IndexedViewHelper.h:181
Namespace containing all symbols from the Eigen library.
Definition: Core:141
@ GetAction
Definition: Constants.h:504
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
b
Definition: data.h:44
static constexpr uint64_t k1
Definition: Hashing.h:171
static constexpr uint64_t k3
Definition: Hashing.h:173
static constexpr uint64_t k2
Definition: Hashing.h:172
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: ConjHelper.h:44
Definition: GeneralBlockPanelKernel.h:1058
Definition: BlasUtil.h:28
Definition: BlasUtil.h:25
static void run(Index size, Index cols, const Scalar *tri, Index triStride, Scalar *_other, Index otherIncr, Index otherStride, level3_blocking< Scalar, Scalar > &blocking)
Definition: TriangularSolverMatrix.h:21
Definition: SolveTriangular.h:23