WPILibC++ 2023.4.3-108-ge5452e3
SparseSelfAdjointView.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16 * \class SparseSelfAdjointView
17 *
18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19 *
20 * \param MatrixType the type of the dense matrix storing the coefficients
21 * \param Mode can be either \c #Lower or \c #Upper
22 *
23 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24 * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25 * and most of the time this is the only way that it is used.
26 *
27 * \sa SparseMatrixBase::selfadjointView()
28 */
29namespace internal {
30
31template<typename MatrixType, unsigned int Mode>
32struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
33};
34
35template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
36void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
37
38template<int Mode,typename MatrixType,int DestOrder>
39void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
40
41}
42
43template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
44 : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
45{
46 public:
47
48 enum {
49 Mode = _Mode,
50 TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
53 };
54
56 typedef typename MatrixType::Scalar Scalar;
57 typedef typename MatrixType::StorageIndex StorageIndex;
61
62 explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
63 {
64 eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
65 }
66
67 inline Index rows() const { return m_matrix.rows(); }
68 inline Index cols() const { return m_matrix.cols(); }
69
70 /** \internal \returns a reference to the nested matrix */
71 const _MatrixTypeNested& matrix() const { return m_matrix; }
73
74 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
75 *
76 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
77 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
78 */
79 template<typename OtherDerived>
82 {
84 }
85
86 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
87 *
88 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
89 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
90 */
91 template<typename OtherDerived> friend
94 {
96 }
97
98 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
99 template<typename OtherDerived>
102 {
103 return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
104 }
105
106 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
107 template<typename OtherDerived> friend
110 {
111 return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
112 }
113
114 /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
115 * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
116 *
117 * \returns a reference to \c *this
118 *
119 * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
120 * call this function with u.adjoint().
121 */
122 template<typename DerivedU>
124
125 /** \returns an expression of P H P^-1 */
126 // TODO implement twists in a more evaluator friendly fashion
128 {
130 }
131
132 template<typename SrcMatrixType,int SrcMode>
134 {
136 return *this;
137 }
138
140 {
142 return *this = src.twistedBy(pnull);
143 }
144
145 // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor
147
148 template<typename SrcMatrixType,unsigned int SrcMode>
150 {
152 return *this = src.twistedBy(pnull);
153 }
154
156 {
159 eigen_assert(rows == this->rows() && cols == this->cols()
160 && "SparseSelfadjointView::resize() does not actually allow to resize.");
161 }
162
163 protected:
164
165 MatrixTypeNested m_matrix;
166 //mutable VectorI m_countPerRow;
167 //mutable VectorI m_countPerCol;
168 private:
169 template<typename Dest> void evalTo(Dest &) const;
170};
171
172/***************************************************************************
173* Implementation of SparseMatrixBase methods
174***************************************************************************/
175
176template<typename Derived>
177template<unsigned int UpLo>
179{
181}
182
183template<typename Derived>
184template<unsigned int UpLo>
186{
187 return SparseSelfAdjointView<Derived, UpLo>(derived());
188}
189
190/***************************************************************************
191* Implementation of SparseSelfAdjointView methods
192***************************************************************************/
193
194template<typename MatrixType, unsigned int Mode>
195template<typename DerivedU>
198{
199 SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
200 if(alpha==Scalar(0))
201 m_matrix = tmp.template triangularView<Mode>();
202 else
203 m_matrix += alpha * tmp.template triangularView<Mode>();
204
205 return *this;
206}
207
208namespace internal {
209
210// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
211// in the future selfadjoint-ness should be defined by the expression traits
212// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
213template<typename MatrixType, unsigned int Mode>
215{
218};
219
221
224
225template< typename DstXprType, typename SrcXprType, typename Functor>
226struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
227{
228 typedef typename DstXprType::StorageIndex StorageIndex;
230
231 template<typename DestScalar,int StorageOrder>
232 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
233 {
234 internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
235 }
236
237 // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
238 template<typename DestScalar,int StorageOrder,typename AssignFunc>
239 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
240 {
242 run(tmp, src, AssignOpType());
244 }
245
246 template<typename DestScalar,int StorageOrder>
247 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
249 {
251 run(tmp, src, AssignOpType());
252 dst += tmp;
253 }
254
255 template<typename DestScalar,int StorageOrder>
256 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
258 {
260 run(tmp, src, AssignOpType());
261 dst -= tmp;
262 }
263
264 template<typename DestScalar>
265 static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
266 {
267 // TODO directly evaluate into dst;
268 SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
269 internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
270 dst = tmp;
271 }
272};
273
274} // end namespace internal
275
276/***************************************************************************
277* Implementation of sparse self-adjoint time dense matrix
278***************************************************************************/
279
280namespace internal {
281
282template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
283inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
284{
286
288 typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
290 typedef typename LhsEval::InnerIterator LhsIterator;
291 typedef typename SparseLhsType::Scalar LhsScalar;
292
293 enum {
294 LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
295 ProcessFirstHalf =
296 ((Mode&(Upper|Lower))==(Upper|Lower))
297 || ( (Mode&Upper) && !LhsIsRowMajor)
298 || ( (Mode&Lower) && LhsIsRowMajor),
299 ProcessSecondHalf = !ProcessFirstHalf
300 };
301
302 SparseLhsTypeNested lhs_nested(lhs);
303 LhsEval lhsEval(lhs_nested);
304
305 // work on one column at once
306 for (Index k=0; k<rhs.cols(); ++k)
307 {
308 for (Index j=0; j<lhs.outerSize(); ++j)
309 {
310 LhsIterator i(lhsEval,j);
311 // handle diagonal coeff
312 if (ProcessSecondHalf)
313 {
314 while (i && i.index()<j) ++i;
315 if(i && i.index()==j)
316 {
317 res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
318 ++i;
319 }
320 }
321
322 // premultiplied rhs for scatters
324 // accumulator for partial scalar product
325 typename DenseResType::Scalar res_j(0);
326 for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
327 {
328 LhsScalar lhs_ij = i.value();
329 if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
330 res_j += lhs_ij * rhs.coeff(i.index(),k);
331 res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
332 }
333 res.coeffRef(j,k) += alpha * res_j;
334
335 // handle diagonal coeff
336 if (ProcessFirstHalf && i && (i.index()==j))
337 res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
338 }
339 }
340}
341
342
343template<typename LhsView, typename Rhs, int ProductType>
344struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
345: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
346{
347 template<typename Dest>
348 static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
349 {
350 typedef typename LhsView::_MatrixTypeNested Lhs;
351 typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
352 typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
353 LhsNested lhsNested(lhsView.matrix());
354 RhsNested rhsNested(rhs);
355
356 internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
357 }
358};
359
360template<typename Lhs, typename RhsView, int ProductType>
361struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
362: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
363{
364 template<typename Dest>
365 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
366 {
367 typedef typename RhsView::_MatrixTypeNested Rhs;
368 typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
369 typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
370 LhsNested lhsNested(lhs);
371 RhsNested rhsNested(rhsView.matrix());
372
373 // transpose everything
374 Transpose<Dest> dstT(dst);
375 internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
376 }
377};
378
379// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
380// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
381
382template<typename LhsView, typename Rhs, int ProductTag>
384 : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
385{
387 typedef typename XprType::PlainObject PlainObject;
389
391 : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
392 {
393 ::new (static_cast<Base*>(this)) Base(m_result);
395 }
396
397protected:
398 typename Rhs::PlainObject m_lhs;
400};
401
402template<typename Lhs, typename RhsView, int ProductTag>
404 : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
405{
407 typedef typename XprType::PlainObject PlainObject;
409
411 : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
412 {
413 ::new (static_cast<Base*>(this)) Base(m_result);
415 }
416
417protected:
418 typename Lhs::PlainObject m_rhs;
420};
421
422} // namespace internal
423
424/***************************************************************************
425* Implementation of symmetric copies and permutations
426***************************************************************************/
427namespace internal {
428
429template<int Mode,typename MatrixType,int DestOrder>
430void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
431{
432 typedef typename MatrixType::StorageIndex StorageIndex;
433 typedef typename MatrixType::Scalar Scalar;
435 typedef Matrix<StorageIndex,Dynamic,1> VectorI;
436 typedef evaluator<MatrixType> MatEval;
437 typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
438
439 MatEval matEval(mat);
440 Dest& dest(_dest.derived());
441 enum {
442 StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
443 };
444
445 Index size = mat.rows();
446 VectorI count;
447 count.resize(size);
448 count.setZero();
449 dest.resize(size,size);
450 for(Index j = 0; j<size; ++j)
451 {
452 Index jp = perm ? perm[j] : j;
453 for(MatIterator it(matEval,j); it; ++it)
454 {
455 Index i = it.index();
456 Index r = it.row();
457 Index c = it.col();
458 Index ip = perm ? perm[i] : i;
459 if(Mode==int(Upper|Lower))
460 count[StorageOrderMatch ? jp : ip]++;
461 else if(r==c)
462 count[ip]++;
463 else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
464 {
465 count[ip]++;
466 count[jp]++;
467 }
468 }
469 }
470 Index nnz = count.sum();
471
472 // reserve space
473 dest.resizeNonZeros(nnz);
474 dest.outerIndexPtr()[0] = 0;
475 for(Index j=0; j<size; ++j)
476 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
477 for(Index j=0; j<size; ++j)
478 count[j] = dest.outerIndexPtr()[j];
479
480 // copy data
481 for(StorageIndex j = 0; j<size; ++j)
482 {
483 for(MatIterator it(matEval,j); it; ++it)
484 {
485 StorageIndex i = internal::convert_index<StorageIndex>(it.index());
486 Index r = it.row();
487 Index c = it.col();
488
489 StorageIndex jp = perm ? perm[j] : j;
490 StorageIndex ip = perm ? perm[i] : i;
491
492 if(Mode==int(Upper|Lower))
493 {
494 Index k = count[StorageOrderMatch ? jp : ip]++;
495 dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
496 dest.valuePtr()[k] = it.value();
497 }
498 else if(r==c)
499 {
500 Index k = count[ip]++;
501 dest.innerIndexPtr()[k] = ip;
502 dest.valuePtr()[k] = it.value();
503 }
504 else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
505 {
506 if(!StorageOrderMatch)
507 std::swap(ip,jp);
508 Index k = count[jp]++;
509 dest.innerIndexPtr()[k] = ip;
510 dest.valuePtr()[k] = it.value();
511 k = count[ip]++;
512 dest.innerIndexPtr()[k] = jp;
513 dest.valuePtr()[k] = numext::conj(it.value());
514 }
515 }
516 }
517}
518
519template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
520void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
521{
522 typedef typename MatrixType::StorageIndex StorageIndex;
523 typedef typename MatrixType::Scalar Scalar;
525 typedef Matrix<StorageIndex,Dynamic,1> VectorI;
526 typedef evaluator<MatrixType> MatEval;
527 typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
528
529 enum {
530 SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
531 StorageOrderMatch = int(SrcOrder) == int(DstOrder),
532 DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
533 SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
534 };
535
536 MatEval matEval(mat);
537
538 Index size = mat.rows();
539 VectorI count(size);
540 count.setZero();
541 dest.resize(size,size);
542 for(StorageIndex j = 0; j<size; ++j)
543 {
544 StorageIndex jp = perm ? perm[j] : j;
545 for(MatIterator it(matEval,j); it; ++it)
546 {
547 StorageIndex i = it.index();
548 if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
549 continue;
550
551 StorageIndex ip = perm ? perm[i] : i;
552 count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
553 }
554 }
555 dest.outerIndexPtr()[0] = 0;
556 for(Index j=0; j<size; ++j)
557 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
558 dest.resizeNonZeros(dest.outerIndexPtr()[size]);
559 for(Index j=0; j<size; ++j)
560 count[j] = dest.outerIndexPtr()[j];
561
562 for(StorageIndex j = 0; j<size; ++j)
563 {
564
565 for(MatIterator it(matEval,j); it; ++it)
566 {
567 StorageIndex i = it.index();
568 if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
569 continue;
570
571 StorageIndex jp = perm ? perm[j] : j;
572 StorageIndex ip = perm? perm[i] : i;
573
574 Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
575 dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
576
577 if(!StorageOrderMatch) std::swap(ip,jp);
578 if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
579 dest.valuePtr()[k] = numext::conj(it.value());
580 else
581 dest.valuePtr()[k] = it.value();
582 }
583 }
584}
585
586}
587
588// TODO implement twists in a more evaluator friendly fashion
589
590namespace internal {
591
592template<typename MatrixType, int Mode>
593struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
594};
595
596}
597
598template<typename MatrixType,int Mode>
600 : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
601{
602 public:
603 typedef typename MatrixType::Scalar Scalar;
604 typedef typename MatrixType::StorageIndex StorageIndex;
605 enum {
608 };
609 protected:
611 public:
613 typedef typename MatrixType::Nested MatrixTypeNested;
615
616 SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
617 : m_matrix(mat), m_perm(perm)
618 {}
619
620 inline Index rows() const { return m_matrix.rows(); }
621 inline Index cols() const { return m_matrix.cols(); }
622
623 const NestedExpression& matrix() const { return m_matrix; }
624 const Perm& perm() const { return m_perm; }
625
626 protected:
628 const Perm& m_perm;
629
630};
631
632namespace internal {
633
634template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
635struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
636{
638 typedef typename DstXprType::StorageIndex DstIndex;
639 template<int Options>
641 {
642 // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
643 SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
644 internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
645 dst = tmp;
646 }
647
648 template<typename DestType,unsigned int DestMode>
650 {
651 internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
652 }
653};
654
655} // end namespace internal
656
657} // end namespace Eigen
658
659#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
#define EIGEN_DEFAULT_COPY_CONSTRUCTOR(CLASS)
Definition: Macros.h:1231
#define EIGEN_ONLY_USED_FOR_DEBUG(x)
Definition: Macros.h:1059
#define eigen_assert(x)
Definition: Macros.h:1047
Definition: SparseUtil.h:53
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
const IndicesType & indices() const
const version of indices().
Definition: PermutationMatrix.h:360
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:75
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const LhsNestedCleaned & lhs() const
Definition: Product.h:107
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const RhsNestedCleaned & rhs() const
Definition: Product.h:109
Base class of any sparse matrices or sparse expressions.
Definition: SparseMatrixBase.h:28
const Derived & derived() const
Definition: SparseMatrixBase.h:143
ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView() const
const AdjointReturnType adjoint() const
Definition: SparseMatrixBase.h:356
A versatible sparse matrix representation.
Definition: SparseMatrix.h:98
void resizeNonZeros(Index size)
Definition: SparseMatrix.h:649
const StorageIndex * innerIndexPtr() const
Definition: SparseMatrix.h:159
const StorageIndex * outerIndexPtr() const
Definition: SparseMatrix.h:168
const Scalar * valuePtr() const
Definition: SparseMatrix.h:150
void resize(Index rows, Index cols)
Resizes the matrix to a rows x cols matrix and initializes it to zero.
Definition: SparseMatrix.h:626
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
Definition: SparseSelfAdjointView.h:45
Matrix< StorageIndex, Dynamic, 1 > VectorI
Definition: SparseSelfAdjointView.h:58
SparseSelfAdjointView & operator=(const SparseSelfAdjointView< SrcMatrixType, SrcMode > &src)
Definition: SparseSelfAdjointView.h:149
internal::remove_all< MatrixTypeNested >::type _MatrixTypeNested
Definition: SparseSelfAdjointView.h:60
MatrixType::StorageIndex StorageIndex
Definition: SparseSelfAdjointView.h:57
void resize(Index rows, Index cols)
Definition: SparseSelfAdjointView.h:155
friend Product< OtherDerived, SparseSelfAdjointView > operator*(const MatrixBase< OtherDerived > &lhs, const SparseSelfAdjointView &rhs)
Efficient dense vector/matrix times sparse self-adjoint matrix product.
Definition: SparseSelfAdjointView.h:109
SparseSelfAdjointView & rankUpdate(const SparseMatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1))
Perform a symmetric rank K update of the selfadjoint matrix *this: where u is a vector or matrix.
Product< SparseSelfAdjointView, OtherDerived > operator*(const MatrixBase< OtherDerived > &rhs) const
Efficient sparse self-adjoint matrix times dense vector/matrix product.
Definition: SparseSelfAdjointView.h:101
SparseSelfAdjointView & operator=(const SparseSymmetricPermutationProduct< SrcMatrixType, SrcMode > &permutedMatrix)
Definition: SparseSelfAdjointView.h:133
Product< SparseSelfAdjointView, OtherDerived > operator*(const SparseMatrixBase< OtherDerived > &rhs) const
Definition: SparseSelfAdjointView.h:81
const _MatrixTypeNested & matrix() const
Definition: SparseSelfAdjointView.h:71
MatrixType::Scalar Scalar
Definition: SparseSelfAdjointView.h:56
MatrixTypeNested m_matrix
Definition: SparseSelfAdjointView.h:165
EigenBase< SparseSelfAdjointView > Base
Definition: SparseSelfAdjointView.h:55
Index rows() const
Definition: SparseSelfAdjointView.h:67
SparseSelfAdjointView(MatrixType &matrix)
Definition: SparseSelfAdjointView.h:62
internal::ref_selector< MatrixType >::non_const_type MatrixTypeNested
Definition: SparseSelfAdjointView.h:59
friend Product< OtherDerived, SparseSelfAdjointView > operator*(const SparseMatrixBase< OtherDerived > &lhs, const SparseSelfAdjointView &rhs)
Definition: SparseSelfAdjointView.h:93
Index cols() const
Definition: SparseSelfAdjointView.h:68
@ Mode
Definition: SparseSelfAdjointView.h:49
@ TransposeMode
Definition: SparseSelfAdjointView.h:50
@ ColsAtCompileTime
Definition: SparseSelfAdjointView.h:52
@ RowsAtCompileTime
Definition: SparseSelfAdjointView.h:51
SparseSelfAdjointView & operator=(const SparseSelfAdjointView &src)
Definition: SparseSelfAdjointView.h:139
SparseSymmetricPermutationProduct< _MatrixTypeNested, Mode > twistedBy(const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const
Definition: SparseSelfAdjointView.h:127
internal::remove_reference< MatrixTypeNested >::type & matrix()
Definition: SparseSelfAdjointView.h:72
Definition: SparseSelfAdjointView.h:601
MatrixType::Nested MatrixTypeNested
Definition: SparseSelfAdjointView.h:613
Matrix< StorageIndex, Dynamic, 1 > VectorI
Definition: SparseSelfAdjointView.h:612
MatrixType::StorageIndex StorageIndex
Definition: SparseSelfAdjointView.h:604
const NestedExpression & matrix() const
Definition: SparseSelfAdjointView.h:623
SparseSymmetricPermutationProduct(const MatrixType &mat, const Perm &perm)
Definition: SparseSelfAdjointView.h:616
MatrixType::Scalar Scalar
Definition: SparseSelfAdjointView.h:603
PermutationMatrix< Dynamic, Dynamic, StorageIndex > Perm
Definition: SparseSelfAdjointView.h:610
const Perm & perm() const
Definition: SparseSelfAdjointView.h:624
MatrixTypeNested m_matrix
Definition: SparseSelfAdjointView.h:627
Index cols() const
Definition: SparseSelfAdjointView.h:621
Index rows() const
Definition: SparseSelfAdjointView.h:620
@ RowsAtCompileTime
Definition: SparseSelfAdjointView.h:606
@ ColsAtCompileTime
Definition: SparseSelfAdjointView.h:607
const Perm & m_perm
Definition: SparseSelfAdjointView.h:628
internal::remove_all< MatrixTypeNested >::type NestedExpression
Definition: SparseSelfAdjointView.h:614
Expression of the transpose of a matrix.
Definition: Transpose.h:54
constexpr auto count() -> size_t
Definition: core.h:1204
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:319
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:321
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:66
constexpr common_t< T1, T2 > max(const T1 x, const T2 y) noexcept
Compile-time pairwise maximum function.
Definition: max.hpp:35
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
void sparse_selfadjoint_time_dense_product(const SparseLhsType &lhs, const DenseRhsType &rhs, DenseResType &res, const AlphaType &alpha)
Definition: SparseSelfAdjointView.h:283
void permute_symm_to_fullsymm(const MatrixType &mat, SparseMatrix< typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex > &_dest, const typename MatrixType::StorageIndex *perm=0)
Definition: SparseSelfAdjointView.h:430
void permute_symm_to_symm(const MatrixType &mat, SparseMatrix< typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex > &_dest, const typename MatrixType::StorageIndex *perm=0)
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment_no_alias_no_transpose(Dst &dst, const Src &src, const Func &func)
Definition: AssignEvaluator.h:922
Namespace containing all symbols from the Eigen library.
Definition: Core:141
@ DefaultProduct
Definition: Constants.h:500
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
void swap(wpi::SmallPtrSet< T, N > &LHS, wpi::SmallPtrSet< T, N > &RHS)
Implement std::swap in terms of SmallPtrSet swap.
Definition: SmallPtrSet.h:512
static constexpr const velocity::meters_per_second_t c(299792458.0)
Speed of light in vacuum.
Definition: Constants.h:528
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:806
Definition: Constants.h:537
static void run(SparseSelfAdjointView< DestType, DestMode > &dst, const SrcXprType &src, const internal::assign_op< Scalar, typename MatrixType::Scalar > &)
Definition: SparseSelfAdjointView.h:649
static void run(SparseMatrix< Scalar, Options, DstIndex > &dst, const SrcXprType &src, const internal::assign_op< Scalar, typename MatrixType::Scalar > &)
Definition: SparseSelfAdjointView.h:640
static void run(SparseMatrix< DestScalar, StorageOrder, StorageIndex > &dst, const SrcXprType &src, const internal::add_assign_op< typename DstXprType::Scalar, typename SrcXprType::Scalar > &)
Definition: SparseSelfAdjointView.h:247
DstXprType::StorageIndex StorageIndex
Definition: SparseSelfAdjointView.h:228
static void run(SparseMatrix< DestScalar, StorageOrder, StorageIndex > &dst, const SrcXprType &src, const AssignOpType &)
Definition: SparseSelfAdjointView.h:232
static void run(SparseMatrix< DestScalar, StorageOrder, StorageIndex > &dst, const SrcXprType &src, const AssignFunc &func)
Definition: SparseSelfAdjointView.h:239
static void run(DynamicSparseMatrix< DestScalar, ColMajor, StorageIndex > &dst, const SrcXprType &src, const AssignOpType &)
Definition: SparseSelfAdjointView.h:265
internal::assign_op< typename DstXprType::Scalar, typename SrcXprType::Scalar > AssignOpType
Definition: SparseSelfAdjointView.h:229
static void run(SparseMatrix< DestScalar, StorageOrder, StorageIndex > &dst, const SrcXprType &src, const internal::sub_assign_op< typename DstXprType::Scalar, typename SrcXprType::Scalar > &)
Definition: SparseSelfAdjointView.h:256
Definition: AssignEvaluator.h:824
Sparse2Sparse Kind
Definition: SparseSelfAdjointView.h:223
SparseSelfAdjoint2Sparse Kind
Definition: SparseSelfAdjointView.h:222
Definition: AssignEvaluator.h:817
Definition: Constants.h:542
Definition: SparseAssign.h:61
Definition: SparseSelfAdjointView.h:220
Definition: SparseUtil.h:138
Definition: AssignmentFunctors.h:46
Definition: AssignmentFunctors.h:21
SparseSelfAdjointShape Shape
Definition: SparseSelfAdjointView.h:217
storage_kind_to_evaluator_kind< typenameMatrixType::StorageKind >::Kind Kind
Definition: SparseSelfAdjointView.h:216
Definition: CoreEvaluators.h:80
Definition: CoreEvaluators.h:91
static void scaleAndAddTo(Dest &dst, const Lhs &lhs, const RhsView &rhsView, const typename Dest::Scalar &alpha)
Definition: SparseSelfAdjointView.h:365
static void scaleAndAddTo(Dest &dst, const LhsView &lhsView, const Rhs &rhs, const typename Dest::Scalar &alpha)
Definition: SparseSelfAdjointView.h:348
Definition: ProductEvaluators.h:344
Definition: ProductEvaluators.h:86
Definition: ForwardDeclarations.h:164
T type
Definition: Meta.h:126
T type
Definition: Meta.h:114
Definition: AssignmentFunctors.h:67
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96