WPILibC++ 2023.4.3-108-ge5452e3
SimplicialCholesky.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
11#define EIGEN_SIMPLICIAL_CHOLESKY_H
12
13namespace Eigen {
14
18};
19
20namespace internal {
21 template<typename CholMatrixType, typename InputMatrixType>
23 typedef CholMatrixType const * ConstCholMatrixPtr;
24 static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp)
25 {
26 tmp = input;
27 pmat = &tmp;
28 }
29 };
30
31 template<typename MatrixType>
32 struct simplicial_cholesky_grab_input<MatrixType,MatrixType> {
33 typedef MatrixType const * ConstMatrixPtr;
34 static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/)
35 {
36 pmat = &input;
37 }
38 };
39} // end namespace internal
40
41/** \ingroup SparseCholesky_Module
42 * \brief A base class for direct sparse Cholesky factorizations
43 *
44 * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are
45 * selfadjoint and positive definite. These factorizations allow for solving A.X = B where
46 * X and B can be either dense or sparse.
47 *
48 * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
49 * such that the factorized matrix is P A P^-1.
50 *
51 * \tparam Derived the type of the derived class, that is the actual factorization type.
52 *
53 */
54template<typename Derived>
56{
59
60 public:
64 typedef typename MatrixType::Scalar Scalar;
65 typedef typename MatrixType::RealScalar RealScalar;
66 typedef typename MatrixType::StorageIndex StorageIndex;
71
72 enum {
73 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
75 };
76
77 public:
78
79 using Base::derived;
80
81 /** Default constructor */
83 : m_info(Success),
85 m_analysisIsOk(false),
88 {}
89
90 explicit SimplicialCholeskyBase(const MatrixType& matrix)
91 : m_info(Success),
93 m_analysisIsOk(false),
96 {
97 derived().compute(matrix);
98 }
99
101 {
102 }
103
104 Derived& derived() { return *static_cast<Derived*>(this); }
105 const Derived& derived() const { return *static_cast<const Derived*>(this); }
106
107 inline Index cols() const { return m_matrix.cols(); }
108 inline Index rows() const { return m_matrix.rows(); }
109
110 /** \brief Reports whether previous computation was successful.
111 *
112 * \returns \c Success if computation was successful,
113 * \c NumericalIssue if the matrix.appears to be negative.
114 */
116 {
117 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
118 return m_info;
119 }
120
121 /** \returns the permutation P
122 * \sa permutationPinv() */
124 { return m_P; }
125
126 /** \returns the inverse P^-1 of the permutation P
127 * \sa permutationP() */
129 { return m_Pinv; }
130
131 /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
132 *
133 * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n
134 * \c d_ii = \a offset + \a scale * \c d_ii
135 *
136 * The default is the identity transformation with \a offset=0, and \a scale=1.
137 *
138 * \returns a reference to \c *this.
139 */
140 Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
141 {
142 m_shiftOffset = offset;
143 m_shiftScale = scale;
144 return derived();
145 }
146
147#ifndef EIGEN_PARSED_BY_DOXYGEN
148 /** \internal */
149 template<typename Stream>
150 void dumpMemory(Stream& s)
151 {
152 int total = 0;
153 s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
154 s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
155 s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
156 s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
157 s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
158 s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
159 s << " TOTAL: " << (total>> 20) << "Mb" << "\n";
160 }
161
162 /** \internal */
163 template<typename Rhs,typename Dest>
165 {
166 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
167 eigen_assert(m_matrix.rows()==b.rows());
168
169 if(m_info!=Success)
170 return;
171
172 if(m_P.size()>0)
173 dest = m_P * b;
174 else
175 dest = b;
176
177 if(m_matrix.nonZeros()>0) // otherwise L==I
178 derived().matrixL().solveInPlace(dest);
179
180 if(m_diag.size()>0)
181 dest = m_diag.asDiagonal().inverse() * dest;
182
183 if (m_matrix.nonZeros()>0) // otherwise U==I
184 derived().matrixU().solveInPlace(dest);
185
186 if(m_P.size()>0)
187 dest = m_Pinv * dest;
188 }
189
190 template<typename Rhs,typename Dest>
192 {
194 }
195
196#endif // EIGEN_PARSED_BY_DOXYGEN
197
198 protected:
199
200 /** Computes the sparse Cholesky decomposition of \a matrix */
201 template<bool DoLDLT>
202 void compute(const MatrixType& matrix)
203 {
204 eigen_assert(matrix.rows()==matrix.cols());
205 Index size = matrix.cols();
208 ordering(matrix, pmat, tmp);
209 analyzePattern_preordered(*pmat, DoLDLT);
210 factorize_preordered<DoLDLT>(*pmat);
211 }
212
213 template<bool DoLDLT>
214 void factorize(const MatrixType& a)
215 {
216 eigen_assert(a.rows()==a.cols());
217 Index size = a.cols();
220
221 if(m_P.size() == 0 && (int(UpLo) & int(Upper)) == Upper)
222 {
223 // If there is no ordering, try to directly use the input matrix without any copy
225 }
226 else
227 {
228 tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
229 pmat = &tmp;
230 }
231
232 factorize_preordered<DoLDLT>(*pmat);
233 }
234
235 template<bool DoLDLT>
237
238 void analyzePattern(const MatrixType& a, bool doLDLT)
239 {
240 eigen_assert(a.rows()==a.cols());
241 Index size = a.cols();
244 ordering(a, pmat, tmp);
245 analyzePattern_preordered(*pmat,doLDLT);
246 }
247 void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
248
250
251 /** keeps off-diagonal entries; drops diagonal entries */
252 struct keep_diag {
253 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
254 {
255 return row!=col;
256 }
257 };
258
262
264 VectorType m_diag; // the diagonal coefficients (LDLT mode)
265 VectorI m_parent; // elimination tree
269
272};
273
274template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT;
275template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT;
276template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky;
277
278namespace internal {
279
280template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
281{
282 typedef _MatrixType MatrixType;
283 typedef _Ordering OrderingType;
284 enum { UpLo = _UpLo };
285 typedef typename MatrixType::Scalar Scalar;
286 typedef typename MatrixType::StorageIndex StorageIndex;
290 static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); }
291 static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
292};
293
294template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
295{
296 typedef _MatrixType MatrixType;
297 typedef _Ordering OrderingType;
298 enum { UpLo = _UpLo };
299 typedef typename MatrixType::Scalar Scalar;
300 typedef typename MatrixType::StorageIndex StorageIndex;
304 static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); }
305 static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
306};
307
308template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
309{
310 typedef _MatrixType MatrixType;
311 typedef _Ordering OrderingType;
312 enum { UpLo = _UpLo };
313};
314
315}
316
317/** \ingroup SparseCholesky_Module
318 * \class SimplicialLLT
319 * \brief A direct sparse LLT Cholesky factorizations
320 *
321 * This class provides a LL^T Cholesky factorizations of sparse matrices that are
322 * selfadjoint and positive definite. The factorization allows for solving A.X = B where
323 * X and B can be either dense or sparse.
324 *
325 * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
326 * such that the factorized matrix is P A P^-1.
327 *
328 * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
329 * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
330 * or Upper. Default is Lower.
331 * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
332 *
333 * \implsparsesolverconcept
334 *
335 * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
336 */
337template<typename _MatrixType, int _UpLo, typename _Ordering>
338 class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
339{
340public:
341 typedef _MatrixType MatrixType;
342 enum { UpLo = _UpLo };
344 typedef typename MatrixType::Scalar Scalar;
345 typedef typename MatrixType::RealScalar RealScalar;
346 typedef typename MatrixType::StorageIndex StorageIndex;
350 typedef typename Traits::MatrixL MatrixL;
351 typedef typename Traits::MatrixU MatrixU;
352public:
353 /** Default constructor */
355 /** Constructs and performs the LLT factorization of \a matrix */
356 explicit SimplicialLLT(const MatrixType& matrix)
357 : Base(matrix) {}
358
359 /** \returns an expression of the factor L */
360 inline const MatrixL matrixL() const {
361 eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
362 return Traits::getL(Base::m_matrix);
363 }
364
365 /** \returns an expression of the factor U (= L^*) */
366 inline const MatrixU matrixU() const {
367 eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
368 return Traits::getU(Base::m_matrix);
369 }
370
371 /** Computes the sparse Cholesky decomposition of \a matrix */
373 {
374 Base::template compute<false>(matrix);
375 return *this;
376 }
377
378 /** Performs a symbolic decomposition on the sparcity of \a matrix.
379 *
380 * This function is particularly useful when solving for several problems having the same structure.
381 *
382 * \sa factorize()
383 */
385 {
386 Base::analyzePattern(a, false);
387 }
388
389 /** Performs a numeric decomposition of \a matrix
390 *
391 * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
392 *
393 * \sa analyzePattern()
394 */
395 void factorize(const MatrixType& a)
396 {
397 Base::template factorize<false>(a);
398 }
399
400 /** \returns the determinant of the underlying matrix from the current factorization */
402 {
403 Scalar detL = Base::m_matrix.diagonal().prod();
404 return numext::abs2(detL);
405 }
406};
407
408/** \ingroup SparseCholesky_Module
409 * \class SimplicialLDLT
410 * \brief A direct sparse LDLT Cholesky factorizations without square root.
411 *
412 * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
413 * selfadjoint and positive definite. The factorization allows for solving A.X = B where
414 * X and B can be either dense or sparse.
415 *
416 * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
417 * such that the factorized matrix is P A P^-1.
418 *
419 * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
420 * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
421 * or Upper. Default is Lower.
422 * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
423 *
424 * \implsparsesolverconcept
425 *
426 * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
427 */
428template<typename _MatrixType, int _UpLo, typename _Ordering>
429 class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
430{
431public:
432 typedef _MatrixType MatrixType;
433 enum { UpLo = _UpLo };
435 typedef typename MatrixType::Scalar Scalar;
436 typedef typename MatrixType::RealScalar RealScalar;
437 typedef typename MatrixType::StorageIndex StorageIndex;
441 typedef typename Traits::MatrixL MatrixL;
442 typedef typename Traits::MatrixU MatrixU;
443public:
444 /** Default constructor */
446
447 /** Constructs and performs the LLT factorization of \a matrix */
448 explicit SimplicialLDLT(const MatrixType& matrix)
449 : Base(matrix) {}
450
451 /** \returns a vector expression of the diagonal D */
452 inline const VectorType vectorD() const {
453 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
454 return Base::m_diag;
455 }
456 /** \returns an expression of the factor L */
457 inline const MatrixL matrixL() const {
458 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
459 return Traits::getL(Base::m_matrix);
460 }
461
462 /** \returns an expression of the factor U (= L^*) */
463 inline const MatrixU matrixU() const {
464 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
465 return Traits::getU(Base::m_matrix);
466 }
467
468 /** Computes the sparse Cholesky decomposition of \a matrix */
470 {
471 Base::template compute<true>(matrix);
472 return *this;
473 }
474
475 /** Performs a symbolic decomposition on the sparcity of \a matrix.
476 *
477 * This function is particularly useful when solving for several problems having the same structure.
478 *
479 * \sa factorize()
480 */
482 {
483 Base::analyzePattern(a, true);
484 }
485
486 /** Performs a numeric decomposition of \a matrix
487 *
488 * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
489 *
490 * \sa analyzePattern()
491 */
492 void factorize(const MatrixType& a)
493 {
494 Base::template factorize<true>(a);
495 }
496
497 /** \returns the determinant of the underlying matrix from the current factorization */
499 {
500 return Base::m_diag.prod();
501 }
502};
503
504/** \deprecated use SimplicialLDLT or class SimplicialLLT
505 * \ingroup SparseCholesky_Module
506 * \class SimplicialCholesky
507 *
508 * \sa class SimplicialLDLT, class SimplicialLLT
509 */
510template<typename _MatrixType, int _UpLo, typename _Ordering>
511 class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
512{
513public:
514 typedef _MatrixType MatrixType;
515 enum { UpLo = _UpLo };
517 typedef typename MatrixType::Scalar Scalar;
518 typedef typename MatrixType::RealScalar RealScalar;
519 typedef typename MatrixType::StorageIndex StorageIndex;
525 public:
527
528 explicit SimplicialCholesky(const MatrixType& matrix)
529 : Base(), m_LDLT(true)
530 {
531 compute(matrix);
532 }
533
535 {
536 switch(mode)
537 {
539 m_LDLT = false;
540 break;
542 m_LDLT = true;
543 break;
544 default:
545 break;
546 }
547
548 return *this;
549 }
550
551 inline const VectorType vectorD() const {
552 eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
553 return Base::m_diag;
554 }
555 inline const CholMatrixType rawMatrix() const {
556 eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
557 return Base::m_matrix;
558 }
559
560 /** Computes the sparse Cholesky decomposition of \a matrix */
562 {
563 if(m_LDLT)
564 Base::template compute<true>(matrix);
565 else
566 Base::template compute<false>(matrix);
567 return *this;
568 }
569
570 /** Performs a symbolic decomposition on the sparcity of \a matrix.
571 *
572 * This function is particularly useful when solving for several problems having the same structure.
573 *
574 * \sa factorize()
575 */
577 {
579 }
580
581 /** Performs a numeric decomposition of \a matrix
582 *
583 * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
584 *
585 * \sa analyzePattern()
586 */
587 void factorize(const MatrixType& a)
588 {
589 if(m_LDLT)
590 Base::template factorize<true>(a);
591 else
592 Base::template factorize<false>(a);
593 }
594
595 /** \internal */
596 template<typename Rhs,typename Dest>
598 {
599 eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
601
603 return;
604
605 if(Base::m_P.size()>0)
606 dest = Base::m_P * b;
607 else
608 dest = b;
609
610 if(Base::m_matrix.nonZeros()>0) // otherwise L==I
611 {
612 if(m_LDLT)
613 LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
614 else
615 LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
616 }
617
618 if(Base::m_diag.size()>0)
619 dest = Base::m_diag.real().asDiagonal().inverse() * dest;
620
621 if (Base::m_matrix.nonZeros()>0) // otherwise I==I
622 {
623 if(m_LDLT)
624 LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
625 else
626 LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
627 }
628
629 if(Base::m_P.size()>0)
630 dest = Base::m_Pinv * dest;
631 }
632
633 /** \internal */
634 template<typename Rhs,typename Dest>
636 {
638 }
639
641 {
642 if(m_LDLT)
643 {
644 return Base::m_diag.prod();
645 }
646 else
647 {
649 return numext::abs2(detL);
650 }
651 }
652
653 protected:
654 bool m_LDLT;
655};
656
657template<typename Derived>
659{
660 eigen_assert(a.rows()==a.cols());
661 const Index size = a.rows();
662 pmat = &ap;
663 // Note that ordering methods compute the inverse permutation
665 {
666 {
668 C = a.template selfadjointView<UpLo>();
669
670 OrderingType ordering;
671 ordering(C,m_Pinv);
672 }
673
674 if(m_Pinv.size()>0) m_P = m_Pinv.inverse();
675 else m_P.resize(0);
676
677 ap.resize(size,size);
678 ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
679 }
680 else
681 {
682 m_Pinv.resize(0);
683 m_P.resize(0);
684 if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor)
685 {
686 // we have to transpose the lower part to to the upper one
687 ap.resize(size,size);
688 ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>();
689 }
690 else
692 }
693}
694
695} // end namespace Eigen
696
697#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:1097
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RowXpr row(Index i)
This is the const version of row(). *‍/.
Definition: BlockMethods.h:1118
#define eigen_assert(x)
Definition: Macros.h:1047
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:65
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
Functor computing the natural ordering (identity)
Definition: Ordering.h:92
EIGEN_DEVICE_FUNC Index size() const
Definition: PermutationMatrix.h:97
A base class for direct sparse Cholesky factorizations.
Definition: SimplicialCholesky.h:56
SimplicialCholeskyBase()
Default constructor.
Definition: SimplicialCholesky.h:82
PermutationMatrix< Dynamic, Dynamic, StorageIndex > m_P
Definition: SimplicialCholesky.h:267
MatrixType::RealScalar RealScalar
Definition: SimplicialCholesky.h:65
VectorI m_parent
Definition: SimplicialCholesky.h:265
CholMatrixType const * ConstCholMatrixPtr
Definition: SimplicialCholesky.h:68
void factorize_preordered(const CholMatrixType &a)
Definition: SimplicialCholesky_impl.h:76
void _solve_impl(const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
Definition: SimplicialCholesky.h:164
@ UpLo
Definition: SimplicialCholesky.h:63
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SimplicialCholesky.h:115
bool m_analysisIsOk
Definition: SimplicialCholesky.h:261
const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & permutationP() const
Definition: SimplicialCholesky.h:123
void ordering(const MatrixType &a, ConstCholMatrixPtr &pmat, CholMatrixType &ap)
Definition: SimplicialCholesky.h:658
RealScalar m_shiftOffset
Definition: SimplicialCholesky.h:270
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:64
Matrix< StorageIndex, Dynamic, 1 > VectorI
Definition: SimplicialCholesky.h:70
void dumpMemory(Stream &s)
Definition: SimplicialCholesky.h:150
CholMatrixType m_matrix
Definition: SimplicialCholesky.h:263
void _solve_impl(const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const
Definition: SimplicialCholesky.h:191
Derived & setShift(const RealScalar &offset, const RealScalar &scale=1)
Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical ...
Definition: SimplicialCholesky.h:140
Derived & derived()
Definition: SimplicialCholesky.h:104
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:66
SimplicialCholeskyBase(const MatrixType &matrix)
Definition: SimplicialCholesky.h:90
void compute(const MatrixType &matrix)
Computes the sparse Cholesky decomposition of matrix.
Definition: SimplicialCholesky.h:202
Matrix< Scalar, Dynamic, 1 > VectorType
Definition: SimplicialCholesky.h:69
Index cols() const
Definition: SimplicialCholesky.h:107
VectorType m_diag
Definition: SimplicialCholesky.h:264
void analyzePattern(const MatrixType &a, bool doLDLT)
Definition: SimplicialCholesky.h:238
Index rows() const
Definition: SimplicialCholesky.h:108
const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & permutationPinv() const
Definition: SimplicialCholesky.h:128
void analyzePattern_preordered(const CholMatrixType &a, bool doLDLT)
Definition: SimplicialCholesky_impl.h:26
internal::traits< Derived >::MatrixType MatrixType
Definition: SimplicialCholesky.h:61
@ ColsAtCompileTime
Definition: SimplicialCholesky.h:73
@ MaxColsAtCompileTime
Definition: SimplicialCholesky.h:74
PermutationMatrix< Dynamic, Dynamic, StorageIndex > m_Pinv
Definition: SimplicialCholesky.h:268
~SimplicialCholeskyBase()
Definition: SimplicialCholesky.h:100
VectorI m_nonZerosPerCol
Definition: SimplicialCholesky.h:266
void factorize(const MatrixType &a)
Definition: SimplicialCholesky.h:214
const Derived & derived() const
Definition: SimplicialCholesky.h:105
bool m_factorizationIsOk
Definition: SimplicialCholesky.h:260
SparseMatrix< Scalar, ColMajor, StorageIndex > CholMatrixType
Definition: SimplicialCholesky.h:67
RealScalar m_shiftScale
Definition: SimplicialCholesky.h:271
ComputationInfo m_info
Definition: SimplicialCholesky.h:259
internal::traits< Derived >::OrderingType OrderingType
Definition: SimplicialCholesky.h:62
Definition: SimplicialCholesky.h:512
SparseMatrix< Scalar, ColMajor, StorageIndex > CholMatrixType
Definition: SimplicialCholesky.h:520
SimplicialCholesky & setMode(SimplicialCholeskyMode mode)
Definition: SimplicialCholesky.h:534
void _solve_impl(const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
Definition: SimplicialCholesky.h:597
Scalar determinant() const
Definition: SimplicialCholesky.h:640
SimplicialCholesky(const MatrixType &matrix)
Definition: SimplicialCholesky.h:528
@ UpLo
Definition: SimplicialCholesky.h:515
MatrixType::RealScalar RealScalar
Definition: SimplicialCholesky.h:518
SimplicialCholesky & compute(const MatrixType &matrix)
Computes the sparse Cholesky decomposition of matrix.
Definition: SimplicialCholesky.h:561
internal::traits< SimplicialCholesky > Traits
Definition: SimplicialCholesky.h:522
bool m_LDLT
Definition: SimplicialCholesky.h:654
SimplicialCholeskyBase< SimplicialCholesky > Base
Definition: SimplicialCholesky.h:516
void analyzePattern(const MatrixType &a)
Performs a symbolic decomposition on the sparcity of matrix.
Definition: SimplicialCholesky.h:576
internal::traits< SimplicialLDLT< MatrixType, UpLo > > LDLTTraits
Definition: SimplicialCholesky.h:523
internal::traits< SimplicialLLT< MatrixType, UpLo > > LLTTraits
Definition: SimplicialCholesky.h:524
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:517
void _solve_impl(const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const
Definition: SimplicialCholesky.h:635
const CholMatrixType rawMatrix() const
Definition: SimplicialCholesky.h:555
_MatrixType MatrixType
Definition: SimplicialCholesky.h:514
void factorize(const MatrixType &a)
Performs a numeric decomposition of matrix.
Definition: SimplicialCholesky.h:587
Matrix< Scalar, Dynamic, 1 > VectorType
Definition: SimplicialCholesky.h:521
const VectorType vectorD() const
Definition: SimplicialCholesky.h:551
SimplicialCholesky()
Definition: SimplicialCholesky.h:526
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:519
A direct sparse LDLT Cholesky factorizations without square root.
Definition: SimplicialCholesky.h:430
SimplicialLDLT(const MatrixType &matrix)
Constructs and performs the LLT factorization of matrix.
Definition: SimplicialCholesky.h:448
MatrixType::RealScalar RealScalar
Definition: SimplicialCholesky.h:436
SimplicialLDLT()
Default constructor.
Definition: SimplicialCholesky.h:445
Traits::MatrixU MatrixU
Definition: SimplicialCholesky.h:442
Matrix< Scalar, Dynamic, 1 > VectorType
Definition: SimplicialCholesky.h:439
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:437
SimplicialLDLT & compute(const MatrixType &matrix)
Computes the sparse Cholesky decomposition of matrix.
Definition: SimplicialCholesky.h:469
_MatrixType MatrixType
Definition: SimplicialCholesky.h:432
SimplicialCholeskyBase< SimplicialLDLT > Base
Definition: SimplicialCholesky.h:434
void factorize(const MatrixType &a)
Performs a numeric decomposition of matrix.
Definition: SimplicialCholesky.h:492
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:435
Scalar determinant() const
Definition: SimplicialCholesky.h:498
void analyzePattern(const MatrixType &a)
Performs a symbolic decomposition on the sparcity of matrix.
Definition: SimplicialCholesky.h:481
const VectorType vectorD() const
Definition: SimplicialCholesky.h:452
@ UpLo
Definition: SimplicialCholesky.h:433
Traits::MatrixL MatrixL
Definition: SimplicialCholesky.h:441
internal::traits< SimplicialLDLT > Traits
Definition: SimplicialCholesky.h:440
const MatrixL matrixL() const
Definition: SimplicialCholesky.h:457
const MatrixU matrixU() const
Definition: SimplicialCholesky.h:463
SparseMatrix< Scalar, ColMajor, StorageIndex > CholMatrixType
Definition: SimplicialCholesky.h:438
A direct sparse LLT Cholesky factorizations.
Definition: SimplicialCholesky.h:339
Traits::MatrixL MatrixL
Definition: SimplicialCholesky.h:350
const MatrixU matrixU() const
Definition: SimplicialCholesky.h:366
SimplicialLLT(const MatrixType &matrix)
Constructs and performs the LLT factorization of matrix.
Definition: SimplicialCholesky.h:356
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:346
SimplicialLLT & compute(const MatrixType &matrix)
Computes the sparse Cholesky decomposition of matrix.
Definition: SimplicialCholesky.h:372
void factorize(const MatrixType &a)
Performs a numeric decomposition of matrix.
Definition: SimplicialCholesky.h:395
Scalar determinant() const
Definition: SimplicialCholesky.h:401
SimplicialCholeskyBase< SimplicialLLT > Base
Definition: SimplicialCholesky.h:343
Traits::MatrixU MatrixU
Definition: SimplicialCholesky.h:351
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:344
SparseMatrix< Scalar, ColMajor, Index > CholMatrixType
Definition: SimplicialCholesky.h:347
SimplicialLLT()
Default constructor.
Definition: SimplicialCholesky.h:354
MatrixType::RealScalar RealScalar
Definition: SimplicialCholesky.h:345
void analyzePattern(const MatrixType &a)
Performs a symbolic decomposition on the sparcity of matrix.
Definition: SimplicialCholesky.h:384
Matrix< Scalar, Dynamic, 1 > VectorType
Definition: SimplicialCholesky.h:348
const MatrixL matrixL() const
Definition: SimplicialCholesky.h:360
@ UpLo
Definition: SimplicialCholesky.h:342
_MatrixType MatrixType
Definition: SimplicialCholesky.h:341
internal::traits< SimplicialLLT > Traits
Definition: SimplicialCholesky.h:349
Base class of any sparse matrices or sparse expressions.
Definition: SparseMatrixBase.h:28
SparseSymmetricPermutationProduct< Derived, Upper|Lower > twistedBy(const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const
Definition: SparseMatrixBase.h:329
const AdjointReturnType adjoint() const
Definition: SparseMatrixBase.h:356
Index nonZeros() const
Definition: SparseCompressedBase.h:56
const ConstDiagonalReturnType diagonal() const
Definition: SparseMatrix.h:655
Index rows() const
Definition: SparseMatrix.h:138
Index cols() const
Definition: SparseMatrix.h:140
void resize(Index rows, Index cols)
Resizes the matrix to a rows x cols matrix and initializes it to zero.
Definition: SparseMatrix.h:626
A base class for sparse solvers.
Definition: SparseSolverBase.h:68
bool m_isInitialized
Definition: SparseSolverBase.h:119
Derived & derived()
Definition: SparseSolverBase.h:79
Expression of a triangular part in a matrix.
Definition: TriangularMatrix.h:189
Definition: core.h:1240
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:440
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
@ Success
Computation was successful.
Definition: Constants.h:442
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
enable_if< Rhs::ColsAtCompileTime!=1 &&Dest::ColsAtCompileTime!=1 >::type solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs &rhs, Dest &dest)
Definition: SparseSolverBase.h:23
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
SimplicialCholeskyMode
Definition: SimplicialCholesky.h:15
@ SimplicialCholeskyLDLT
Definition: SimplicialCholesky.h:17
@ SimplicialCholeskyLLT
Definition: SimplicialCholesky.h:16
Definition: Eigen_Colamd.h:50
b
Definition: data.h:44
keeps off-diagonal entries; drops diagonal entries
Definition: SimplicialCholesky.h:252
bool operator()(const Index &row, const Index &col, const Scalar &) const
Definition: SimplicialCholesky.h:253
Definition: Meta.h:148
static void run(const MatrixType &input, ConstMatrixPtr &pmat, MatrixType &)
Definition: SimplicialCholesky.h:34
MatrixType const * ConstMatrixPtr
Definition: SimplicialCholesky.h:33
Definition: SimplicialCholesky.h:22
CholMatrixType const * ConstCholMatrixPtr
Definition: SimplicialCholesky.h:23
static void run(const InputMatrixType &input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp)
Definition: SimplicialCholesky.h:24
TriangularView< const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper > MatrixU
Definition: SimplicialCholesky.h:303
SparseMatrix< Scalar, ColMajor, StorageIndex > CholMatrixType
Definition: SimplicialCholesky.h:301
static MatrixU getU(const CholMatrixType &m)
Definition: SimplicialCholesky.h:305
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:300
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:299
TriangularView< const CholMatrixType, Eigen::UnitLower > MatrixL
Definition: SimplicialCholesky.h:302
_MatrixType MatrixType
Definition: SimplicialCholesky.h:296
static MatrixL getL(const CholMatrixType &m)
Definition: SimplicialCholesky.h:304
TriangularView< const typename CholMatrixType::AdjointReturnType, Eigen::Upper > MatrixU
Definition: SimplicialCholesky.h:289
SparseMatrix< Scalar, ColMajor, StorageIndex > CholMatrixType
Definition: SimplicialCholesky.h:287
_MatrixType MatrixType
Definition: SimplicialCholesky.h:282
MatrixType::StorageIndex StorageIndex
Definition: SimplicialCholesky.h:286
_Ordering OrderingType
Definition: SimplicialCholesky.h:283
static MatrixL getL(const CholMatrixType &m)
Definition: SimplicialCholesky.h:290
MatrixType::Scalar Scalar
Definition: SimplicialCholesky.h:285
TriangularView< const CholMatrixType, Eigen::Lower > MatrixL
Definition: SimplicialCholesky.h:288
static MatrixU getU(const CholMatrixType &m)
Definition: SimplicialCholesky.h:291
Definition: ForwardDeclarations.h:17