WPILibC++ 2023.4.3-108-ge5452e3
NullaryFunctors.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_NULLARY_FUNCTORS_H
11#define EIGEN_NULLARY_FUNCTORS_H
12
13namespace Eigen {
14
15namespace internal {
16
17template<typename Scalar>
22 template<typename PacketType>
23 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
24 const Scalar m_other;
25};
26template<typename Scalar>
28{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
30
31template<typename Scalar> struct scalar_identity_op {
33 template<typename IndexType>
34 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
35};
36template<typename Scalar>
39
40template <typename Scalar, bool IsInteger> struct linspaced_op_impl;
41
42template <typename Scalar>
43struct linspaced_op_impl<Scalar,/*IsInteger*/false>
44{
46
47 EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
48 m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : Scalar((high-low)/RealScalar(num_steps-1))),
49 m_flip(numext::abs(high)<numext::abs(low))
50 {}
51
52 template<typename IndexType>
53 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
54 if(m_flip)
55 return (i==0)? m_low : Scalar(m_high - RealScalar(m_size1-i)*m_step);
56 else
57 return (i==m_size1)? m_high : Scalar(m_low + RealScalar(i)*m_step);
58 }
59
60 template<typename Packet, typename IndexType>
61 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
62 {
63 // Principle:
64 // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
65 if(m_flip)
66 {
67 Packet pi = plset<Packet>(Scalar(i-m_size1));
68 Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
69 if (EIGEN_PREDICT_TRUE(i != 0)) return res;
70 Packet mask = pcmp_lt(pset1<Packet>(0), plset<Packet>(0));
71 return pselect<Packet>(mask, res, pset1<Packet>(m_low));
72 }
73 else
74 {
75 Packet pi = plset<Packet>(Scalar(i));
76 Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
77 if(EIGEN_PREDICT_TRUE(i != m_size1-unpacket_traits<Packet>::size+1)) return res;
78 Packet mask = pcmp_lt(plset<Packet>(0), pset1<Packet>(unpacket_traits<Packet>::size-1));
79 return pselect<Packet>(mask, res, pset1<Packet>(m_high));
80 }
81 }
82
83 const Scalar m_low;
84 const Scalar m_high;
86 const Scalar m_step;
87 const bool m_flip;
88};
89
90template <typename Scalar>
91struct linspaced_op_impl<Scalar,/*IsInteger*/true>
92{
93 EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
94 m_low(low),
95 m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
96 m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
97 m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
98 {}
99
100 template<typename IndexType>
102 const Scalar operator() (IndexType i) const
103 {
104 if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
105 else return m_low + convert_index<Scalar>(i)*m_multiplier;
106 }
107
108 const Scalar m_low;
109 const Scalar m_multiplier;
110 const Scalar m_divisor;
111 const bool m_use_divisor;
112};
113
114// ----- Linspace functor ----------------------------------------------------------------
115
116// Forward declaration (we default to random access which does not really give
117// us a speed gain when using packet access but it allows to use the functor in
118// nested expressions).
119template <typename Scalar> struct linspaced_op;
120template <typename Scalar> struct functor_traits< linspaced_op<Scalar> >
121{
122 enum
123 {
124 Cost = 1,
126 /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
127 IsRepeatable = true
128 };
129};
130template <typename Scalar> struct linspaced_op
131{
132 EIGEN_DEVICE_FUNC linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
133 : impl((num_steps==1 ? high : low),high,num_steps)
134 {}
135
136 template<typename IndexType>
137 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
138
139 template<typename Packet,typename IndexType>
140 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.template packetOp<Packet>(i); }
141
142 // This proxy object handles the actual required temporaries and the different
143 // implementations (integer vs. floating point).
145};
146
147// Linear access is automatically determined from the operator() prototypes available for the given functor.
148// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
149// and linear access is not possible. In all other cases, linear access is enabled.
150// Users should not have to deal with this structure.
151template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
152
153// For unreliable compilers, let's specialize the has_*ary_operator
154// helpers so that at least built-in nullary functors work fine.
155#if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
156template<typename Scalar,typename IndexType>
157struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
158template<typename Scalar,typename IndexType>
159struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
160template<typename Scalar,typename IndexType>
161struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
162
163template<typename Scalar,typename IndexType>
164struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
165template<typename Scalar,typename IndexType>
166struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
167template<typename Scalar,typename IndexType>
168struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
169
170template<typename Scalar,typename IndexType>
171struct has_nullary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; };
172template<typename Scalar,typename IndexType>
173struct has_unary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 1}; };
174template<typename Scalar,typename IndexType>
175struct has_binary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; };
176
177template<typename Scalar,typename IndexType>
178struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
179template<typename Scalar,typename IndexType>
180struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
181template<typename Scalar,typename IndexType>
182struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
183#endif
184
185} // end namespace internal
186
187} // end namespace Eigen
188
189#endif // EIGEN_NULLARY_FUNCTORS_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:1097
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RowXpr row(Index i)
This is the const version of row(). *‍/.
Definition: BlockMethods.h:1118
internal::enable_if< internal::valid_indexed_view_overload< RowIndices, ColIndices >::value &&internal::traits< typenameEIGEN_INDEXED_VIEW_METHOD_TYPE< RowIndices, ColIndices >::type >::ReturnAsIndexedView, typenameEIGEN_INDEXED_VIEW_METHOD_TYPE< RowIndices, ColIndices >::type >::type operator()(const RowIndices &rowIndices, const ColIndices &colIndices) EIGEN_INDEXED_VIEW_METHOD_CONST
Definition: IndexedViewMethods.h:73
#define EIGEN_PREDICT_TRUE(x)
Definition: Macros.h:1332
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_STRONG_INLINE
Definition: Macros.h:927
#define EIGEN_EMPTY_STRUCT_CTOR(X)
Definition: XprHelper.h:22
Definition: core.h:1240
UnitType abs(const UnitType x) noexcept
Compute absolute value.
Definition: math.h:721
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:215
EIGEN_DEVICE_FUNC IndexDest convert_index(const IndexSrc &idx)
Definition: XprHelper.h:31
EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f &a, const Packet8f &b)
Definition: PacketMath.h:346
EIGEN_DEVICE_FUNC Packet pmul(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:237
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Definition: Eigen_Colamd.h:50
static constexpr const unit_t< PI > pi(1)
Ratio of a circle's circumference to its diameter.
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Definition: NullaryFunctors.h:151
@ ret
Definition: NullaryFunctors.h:151
Definition: XprHelper.h:176
@ PacketAccess
Definition: XprHelper.h:180
@ Cost
Definition: XprHelper.h:179
@ IsRepeatable
Definition: XprHelper.h:181
NumTraits< Scalar >::Real RealScalar
Definition: NullaryFunctors.h:45
const Scalar m_step
Definition: NullaryFunctors.h:86
const Scalar m_low
Definition: NullaryFunctors.h:83
EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar &low, const Scalar &high, Index num_steps)
Definition: NullaryFunctors.h:47
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
Definition: NullaryFunctors.h:61
const bool m_flip
Definition: NullaryFunctors.h:87
const Index m_size1
Definition: NullaryFunctors.h:85
const Scalar m_high
Definition: NullaryFunctors.h:84
const Scalar m_multiplier
Definition: NullaryFunctors.h:109
const Scalar m_divisor
Definition: NullaryFunctors.h:110
EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar &low, const Scalar &high, Index num_steps)
Definition: NullaryFunctors.h:93
const bool m_use_divisor
Definition: NullaryFunctors.h:111
const Scalar m_low
Definition: NullaryFunctors.h:108
Definition: NullaryFunctors.h:40
Definition: NullaryFunctors.h:131
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
Definition: NullaryFunctors.h:140
EIGEN_DEVICE_FUNC linspaced_op(const Scalar &low, const Scalar &high, Index num_steps)
Definition: NullaryFunctors.h:132
const linspaced_op_impl< Scalar, NumTraits< Scalar >::IsInteger > impl
Definition: NullaryFunctors.h:144
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const
Definition: NullaryFunctors.h:137
Definition: GenericPacketMath.h:107
Definition: NullaryFunctors.h:18
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()() const
Definition: NullaryFunctors.h:21
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const
Definition: NullaryFunctors.h:23
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar &other)
Definition: NullaryFunctors.h:20
const Scalar m_other
Definition: NullaryFunctors.h:24
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op &other)
Definition: NullaryFunctors.h:19
Definition: NullaryFunctors.h:31
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType row, IndexType col) const
Definition: NullaryFunctors.h:34
Definition: Random.h:17
Definition: GenericPacketMath.h:133