11#ifndef EIGEN_MATRIX_EXPONENTIAL
12#define EIGEN_MATRIX_EXPONENTIAL
23template <
typename RealScalar>
37 inline const RealScalar
operator() (
const RealScalar& x)
const
40 return ldexp(x, -m_squarings);
52 return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
64template <
typename MatA,
typename MatU,
typename MatV>
67 typedef typename MatA::PlainObject MatrixType;
69 const RealScalar
b[] = {120.L, 60.L, 12.L, 1.L};
70 const MatrixType A2 = A * A;
71 const MatrixType tmp =
b[3] * A2 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
72 U.noalias() = A * tmp;
73 V =
b[2] * A2 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
81template <
typename MatA,
typename MatU,
typename MatV>
84 typedef typename MatA::PlainObject MatrixType;
86 const RealScalar
b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
87 const MatrixType A2 = A * A;
88 const MatrixType A4 = A2 * A2;
89 const MatrixType tmp =
b[5] * A4 +
b[3] * A2 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
90 U.noalias() = A * tmp;
91 V =
b[4] * A4 +
b[2] * A2 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
99template <
typename MatA,
typename MatU,
typename MatV>
102 typedef typename MatA::PlainObject MatrixType;
104 const RealScalar
b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
105 const MatrixType A2 = A * A;
106 const MatrixType A4 = A2 * A2;
107 const MatrixType A6 = A4 * A2;
108 const MatrixType tmp =
b[7] * A6 +
b[5] * A4 +
b[3] * A2
109 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
110 U.noalias() = A * tmp;
111 V =
b[6] * A6 +
b[4] * A4 +
b[2] * A2 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
120template <
typename MatA,
typename MatU,
typename MatV>
123 typedef typename MatA::PlainObject MatrixType;
125 const RealScalar
b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
126 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
127 const MatrixType A2 = A * A;
128 const MatrixType A4 = A2 * A2;
129 const MatrixType A6 = A4 * A2;
130 const MatrixType A8 = A6 * A2;
131 const MatrixType tmp =
b[9] * A8 +
b[7] * A6 +
b[5] * A4 +
b[3] * A2
132 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
133 U.noalias() = A * tmp;
134 V =
b[8] * A8 +
b[6] * A6 +
b[4] * A4 +
b[2] * A2 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
142template <
typename MatA,
typename MatU,
typename MatV>
145 typedef typename MatA::PlainObject MatrixType;
147 const RealScalar
b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
148 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
149 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
150 const MatrixType A2 = A * A;
151 const MatrixType A4 = A2 * A2;
152 const MatrixType A6 = A4 * A2;
153 V =
b[13] * A6 +
b[11] * A4 +
b[9] * A2;
154 MatrixType tmp = A6 * V;
155 tmp +=
b[7] * A6 +
b[5] * A4 +
b[3] * A2 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
156 U.noalias() = A * tmp;
157 tmp =
b[12] * A6 +
b[10] * A4 +
b[8] * A2;
158 V.noalias() = A6 * tmp;
159 V +=
b[6] * A6 +
b[4] * A4 +
b[2] * A2 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
169#if LDBL_MANT_DIG > 64
170template <
typename MatA,
typename MatU,
typename MatV>
171void matrix_exp_pade17(
const MatA& A, MatU& U, MatV& V)
173 typedef typename MatA::PlainObject MatrixType;
175 const RealScalar
b[] = {830034394580628357120000.L, 415017197290314178560000.L,
176 100610229646136770560000.L, 15720348382208870400000.L,
177 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
178 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
179 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
180 46512.L, 306.L, 1.L};
181 const MatrixType A2 = A * A;
182 const MatrixType A4 = A2 * A2;
183 const MatrixType A6 = A4 * A2;
184 const MatrixType A8 = A4 * A4;
185 V =
b[17] * A8 +
b[15] * A6 +
b[13] * A4 +
b[11] * A2;
186 MatrixType tmp = A8 * V;
187 tmp +=
b[9] * A8 +
b[7] * A6 +
b[5] * A4 +
b[3] * A2
188 +
b[1] * MatrixType::Identity(A.rows(), A.cols());
189 U.noalias() = A * tmp;
190 tmp =
b[16] * A8 +
b[14] * A6 +
b[12] * A4 +
b[10] * A2;
191 V.noalias() = tmp * A8;
192 V +=
b[8] * A8 +
b[6] * A6 +
b[4] * A4 +
b[2] * A2
193 +
b[0] * MatrixType::Identity(A.rows(), A.cols());
197template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
207 static void run(
const MatrixType&
arg, MatrixType& U, MatrixType& V,
int& squarings);
210template <
typename MatrixType>
213 template <
typename ArgType>
214 static void run(
const ArgType&
arg, MatrixType& U, MatrixType& V,
int& squarings)
218 const float l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
220 if (l1norm < 4.258730016922831e-001f) {
222 }
else if (l1norm < 1.880152677804762e+000f) {
225 const float maxnorm = 3.925724783138660f;
226 frexp(l1norm / maxnorm, &squarings);
227 if (squarings < 0) squarings = 0;
234template <
typename MatrixType>
238 template <
typename ArgType>
239 static void run(
const ArgType&
arg, MatrixType& U, MatrixType& V,
int& squarings)
243 const RealScalar l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
245 if (l1norm < 1.495585217958292e-002) {
247 }
else if (l1norm < 2.539398330063230e-001) {
249 }
else if (l1norm < 9.504178996162932e-001) {
251 }
else if (l1norm < 2.097847961257068e+000) {
255 frexp(l1norm / maxnorm, &squarings);
256 if (squarings < 0) squarings = 0;
263template <
typename MatrixType>
266 template <
typename ArgType>
267 static void run(
const ArgType&
arg, MatrixType& U, MatrixType& V,
int& squarings)
269#if LDBL_MANT_DIG == 53
276 const long double l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
279#if LDBL_MANT_DIG <= 64
281 if (l1norm < 4.1968497232266989671e-003L) {
283 }
else if (l1norm < 1.1848116734693823091e-001L) {
285 }
else if (l1norm < 5.5170388480686700274e-001L) {
287 }
else if (l1norm < 1.3759868875587845383e+000L) {
290 const long double maxnorm = 4.0246098906697353063L;
291 frexp(l1norm / maxnorm, &squarings);
292 if (squarings < 0) squarings = 0;
297#elif LDBL_MANT_DIG <= 106
299 if (l1norm < 3.2787892205607026992947488108213e-005L) {
301 }
else if (l1norm < 6.4467025060072760084130906076332e-003L) {
303 }
else if (l1norm < 6.8988028496595374751374122881143e-002L) {
305 }
else if (l1norm < 2.7339737518502231741495857201670e-001L) {
307 }
else if (l1norm < 1.3203382096514474905666448850278e+000L) {
310 const long double maxnorm = 3.2579440895405400856599663723517L;
311 frexp(l1norm / maxnorm, &squarings);
312 if (squarings < 0) squarings = 0;
314 matrix_exp_pade17(A, U, V);
317#elif LDBL_MANT_DIG <= 113
319 if (l1norm < 1.639394610288918690547467954466970e-005L) {
321 }
else if (l1norm < 4.253237712165275566025884344433009e-003L) {
323 }
else if (l1norm < 5.125804063165764409885122032933142e-002L) {
325 }
else if (l1norm < 2.170000765161155195453205651889853e-001L) {
327 }
else if (l1norm < 1.125358383453143065081397882891878e+000L) {
330 const long double maxnorm = 2.884233277829519311757165057717815L;
331 frexp(l1norm / maxnorm, &squarings);
332 if (squarings < 0) squarings = 0;
334 matrix_exp_pade17(A, U, V);
350#if LDBL_MANT_DIG <= 113
354template <
typename ArgType,
typename ResultType>
357 typedef typename ArgType::PlainObject MatrixType;
361 MatrixType numer = U + V;
362 MatrixType denom = -U + V;
363 result = denom.partialPivLu().solve(numer);
364 for (
int i=0; i<squarings; i++)
374template <
typename ArgType,
typename ResultType>
377 typedef typename ArgType::PlainObject MatrixType;
380 typedef typename std::complex<RealScalar> ComplexScalar;
381 result =
arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
397:
public ReturnByValue<MatrixExponentialReturnValue<Derived> >
410 template <
typename ResultType>
425template<
typename Derived>
432template <
typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArgReturnType arg() const
Definition: ArrayCwiseUnaryOps.h:66
#define eigen_assert(x)
Definition: Macros.h:1047
Definition: ReturnByValue.h:52
dimensionless::scalar_t exp(const ScalarUnit x) noexcept
Compute exponential function.
Definition: math.h:332
void matrix_exp_pade7(const MatA &A, MatU &U, MatV &V)
Compute the (7,7)-Padé approximant to the exponential.
Definition: MatrixExponential.h:100
void matrix_exp_pade9(const MatA &A, MatU &U, MatV &V)
Compute the (9,9)-Padé approximant to the exponential.
Definition: MatrixExponential.h:121
void matrix_exp_compute(const ArgType &arg, ResultType &result, true_type)
Definition: MatrixExponential.h:355
void matrix_exp_pade3(const MatA &A, MatU &U, MatV &V)
Compute the (3,3)-Padé approximant to the exponential.
Definition: MatrixExponential.h:65
void matrix_exp_pade13(const MatA &A, MatU &U, MatV &V)
Compute the (13,13)-Padé approximant to the exponential.
Definition: MatrixExponential.h:143
void matrix_exp_pade5(const MatA &A, MatU &U, MatV &V)
Compute the (5,5)-Padé approximant to the exponential.
Definition: MatrixExponential.h:82
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
result
Definition: format.h:2564
Definition: Eigen_Colamd.h:50
constexpr common_t< T1, T2 > pow(const T1 base, const T2 exp_term) noexcept
Compile-time power function.
Definition: pow.hpp:76
Proxy for the matrix exponential of some matrix (expression).
Definition: MatrixExponential.h:398
void evalTo(ResultType &result) const
Compute the matrix exponential.
Definition: MatrixExponential.h:411
MatrixExponentialReturnValue(const Derived &src)
Constructor.
Definition: MatrixExponential.h:404
Index rows() const
Definition: MatrixExponential.h:417
const internal::ref_selector< Derived >::type m_src
Definition: MatrixExponential.h:421
Index cols() const
Definition: MatrixExponential.h:418
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Scaling operator.
Definition: MatrixExponential.h:25
std::complex< RealScalar > ComplexScalar
Definition: MatrixExponential.h:43
const RealScalar operator()(const RealScalar &x) const
Scale a matrix coefficient.
Definition: MatrixExponential.h:37
MatrixExponentialScalingOp(int squarings)
Constructor.
Definition: MatrixExponential.h:30
Definition: MatrixExponential.h:347
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
Definition: MatrixExponential.h:239
NumTraits< typenametraits< MatrixType >::Scalar >::Real RealScalar
Definition: MatrixExponential.h:237
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
Definition: MatrixExponential.h:214
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
Definition: MatrixExponential.h:267
Compute the (17,17)-Padé approximant to the exponential.
Definition: MatrixExponential.h:199
static void run(const MatrixType &arg, MatrixType &U, MatrixType &V, int &squarings)
Compute Padé approximant to the exponential.
Derived::PlainObject ReturnType
Definition: MatrixExponential.h:428
Definition: ForwardDeclarations.h:17