WPILibC++ 2023.4.3-108-ge5452e3
Matrix.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_MATRIX_H
12#define EIGEN_MATRIX_H
13
14namespace Eigen {
15
16namespace internal {
17template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
18struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
19{
20private:
22 typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
23 enum {
24 row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
25 is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
26 max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
28 actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
30 packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
31 };
32
33public:
34 typedef _Scalar Scalar;
38 enum {
39 RowsAtCompileTime = _Rows,
40 ColsAtCompileTime = _Cols,
41 MaxRowsAtCompileTime = _MaxRows,
42 MaxColsAtCompileTime = _MaxCols,
44 Options = _Options,
45 InnerStrideAtCompileTime = 1,
46 OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
47
48 // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
49 EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit,
50 Alignment = actual_alignment
51 };
52};
53}
54
55/** \class Matrix
56 * \ingroup Core_Module
57 *
58 * \brief The matrix class, also used for vectors and row-vectors
59 *
60 * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
61 * Vectors are matrices with one column, and row-vectors are matrices with one row.
62 *
63 * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
64 *
65 * The first three template parameters are required:
66 * \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>.
67 * User defined scalar types are supported as well (see \ref user_defined_scalars "here").
68 * \tparam _Rows Number of rows, or \b Dynamic
69 * \tparam _Cols Number of columns, or \b Dynamic
70 *
71 * The remaining template parameters are optional -- in most cases you don't have to worry about them.
72 * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either
73 * \b #AutoAlign or \b #DontAlign.
74 * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
75 * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
76 * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
77 * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
78 *
79 * Eigen provides a number of typedefs covering the usual cases. Here are some examples:
80 *
81 * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
82 * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
83 * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
84 *
85 * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
86 * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
87 *
88 * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
89 * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
90 *
91 * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
92 *
93 * You can access elements of vectors and matrices using normal subscripting:
94 *
95 * \code
96 * Eigen::VectorXd v(10);
97 * v[0] = 0.1;
98 * v[1] = 0.2;
99 * v(0) = 0.3;
100 * v(1) = 0.4;
101 *
102 * Eigen::MatrixXi m(10, 10);
103 * m(0, 1) = 1;
104 * m(0, 2) = 2;
105 * m(0, 3) = 3;
106 * \endcode
107 *
108 * This class can be extended with the help of the plugin mechanism described on the page
109 * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
110 *
111 * <i><b>Some notes:</b></i>
112 *
113 * <dl>
114 * <dt><b>\anchor dense Dense versus sparse:</b></dt>
115 * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
116 *
117 * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
118 * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
119 *
120 * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
121 * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
122 * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
123 * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
124 *
125 * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
126 * variables, and the array of coefficients is allocated dynamically on the heap.
127 *
128 * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
129 * If you want this behavior, see the Sparse module.</dd>
130 *
131 * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
132 * <dd>In most cases, one just leaves these parameters to the default values.
133 * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
134 * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
135 * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
136 * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
137 * </dl>
138 *
139 * <i><b>ABI and storage layout</b></i>
140 *
141 * The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3.
142 * <table class="manual">
143 * <tr><th>Matrix type</th><th>Equivalent C structure</th></tr>
144 * <tr><td>\code Matrix<T,Dynamic,Dynamic> \endcode</td><td>\code
145 * struct {
146 * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
147 * Eigen::Index rows, cols;
148 * };
149 * \endcode</td></tr>
150 * <tr class="alt"><td>\code
151 * Matrix<T,Dynamic,1>
152 * Matrix<T,1,Dynamic> \endcode</td><td>\code
153 * struct {
154 * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
155 * Eigen::Index size;
156 * };
157 * \endcode</td></tr>
158 * <tr><td>\code Matrix<T,Rows,Cols> \endcode</td><td>\code
159 * struct {
160 * T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0
161 * };
162 * \endcode</td></tr>
163 * <tr class="alt"><td>\code Matrix<T,Dynamic,Dynamic,0,MaxRows,MaxCols> \endcode</td><td>\code
164 * struct {
165 * T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0
166 * Eigen::Index rows, cols;
167 * };
168 * \endcode</td></tr>
169 * </table>
170 * Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two
171 * smaller to EIGEN_MAX_STATIC_ALIGN_BYTES.
172 *
173 * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
174 * \ref TopicStorageOrders
175 */
176
177template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
179 : public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
180{
181 public:
182
183 /** \brief Base class typedef.
184 * \sa PlainObjectBase
185 */
187
188 enum { Options = _Options };
189
191
192 typedef typename Base::PlainObject PlainObject;
193
194 using Base::base;
195 using Base::coeffRef;
196
197 /**
198 * \brief Assigns matrices to each other.
199 *
200 * \note This is a special case of the templated operator=. Its purpose is
201 * to prevent a default operator= from hiding the templated operator=.
202 *
203 * \callgraph
204 */
206 EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
207 {
208 return Base::_set(other);
209 }
210
211 /** \internal
212 * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
213 *
214 * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
215 * it will be initialized.
216 *
217 * Note that copying a row-vector into a vector (and conversely) is allowed.
218 * The resizing, if any, is then done in the appropriate way so that row-vectors
219 * remain row-vectors and vectors remain vectors.
220 */
221 template<typename OtherDerived>
224 {
225 return Base::_set(other);
226 }
227
228 /* Here, doxygen failed to copy the brief information when using \copydoc */
229
230 /**
231 * \brief Copies the generic expression \a other into *this.
232 * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
233 */
234 template<typename OtherDerived>
237 {
238 return Base::operator=(other);
239 }
240
241 template<typename OtherDerived>
244 {
245 return Base::operator=(func);
246 }
247
248 /** \brief Default constructor.
249 *
250 * For fixed-size matrices, does nothing.
251 *
252 * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
253 * is called a null matrix. This constructor is the unique way to create null matrices: resizing
254 * a matrix to 0 is not supported.
255 *
256 * \sa resize(Index,Index)
257 */
260 {
263 }
264
265 // FIXME is it still needed
268 : Base(internal::constructor_without_unaligned_array_assert())
270
271#if EIGEN_HAS_RVALUE_REFERENCES
273 Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
274 : Base(std::move(other))
275 {
277 }
279 Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
280 {
281 Base::operator=(std::move(other));
282 return *this;
283 }
284#endif
285
286#if EIGEN_HAS_CXX11
287 /** \copydoc PlainObjectBase(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&... args)
288 *
289 * Example: \include Matrix_variadic_ctor_cxx11.cpp
290 * Output: \verbinclude Matrix_variadic_ctor_cxx11.out
291 *
292 * \sa Matrix(const std::initializer_list<std::initializer_list<Scalar>>&)
293 */
294 template <typename... ArgTypes>
296 Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
297 : Base(a0, a1, a2, a3, args...) {}
298
299 /** \brief Constructs a Matrix and initializes it from the coefficients given as initializer-lists grouped by row. \cpp11
300 *
301 * In the general case, the constructor takes a list of rows, each row being represented as a list of coefficients:
302 *
303 * Example: \include Matrix_initializer_list_23_cxx11.cpp
304 * Output: \verbinclude Matrix_initializer_list_23_cxx11.out
305 *
306 * Each of the inner initializer lists must contain the exact same number of elements, otherwise an assertion is triggered.
307 *
308 * In the case of a compile-time column vector, implicit transposition from a single row is allowed.
309 * Therefore <code>VectorXd{{1,2,3,4,5}}</code> is legal and the more verbose syntax
310 * <code>RowVectorXd{{1},{2},{3},{4},{5}}</code> can be avoided:
311 *
312 * Example: \include Matrix_initializer_list_vector_cxx11.cpp
313 * Output: \verbinclude Matrix_initializer_list_vector_cxx11.out
314 *
315 * In the case of fixed-sized matrices, the initializer list sizes must exactly match the matrix sizes,
316 * and implicit transposition is allowed for compile-time vectors only.
317 *
318 * \sa Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
319 */
321 explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<std::initializer_list<Scalar>>& list) : Base(list) {}
322#endif // end EIGEN_HAS_CXX11
323
324#ifndef EIGEN_PARSED_BY_DOXYGEN
325
326 // This constructor is for both 1x1 matrices and dynamic vectors
327 template<typename T>
329 explicit Matrix(const T& x)
330 {
332 Base::template _init1<T>(x);
333 }
334
335 template<typename T0, typename T1>
337 Matrix(const T0& x, const T1& y)
338 {
340 Base::template _init2<T0,T1>(x, y);
341 }
342
343
344#else
345 /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
347 explicit Matrix(const Scalar *data);
348
349 /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
350 *
351 * This is useful for dynamic-size vectors. For fixed-size vectors,
352 * it is redundant to pass these parameters, so one should use the default constructor
353 * Matrix() instead.
354 *
355 * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
356 * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
357 * For fixed-size \c 1x1 matrices it is therefore recommended to use the default
358 * constructor Matrix() instead, especially when using one of the non standard
359 * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
360 */
361 EIGEN_STRONG_INLINE explicit Matrix(Index dim);
362 /** \brief Constructs an initialized 1x1 matrix with the given coefficient
363 * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */
364 Matrix(const Scalar& x);
365 /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
366 *
367 * This is useful for dynamic-size matrices. For fixed-size matrices,
368 * it is redundant to pass these parameters, so one should use the default constructor
369 * Matrix() instead.
370 *
371 * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
372 * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
373 * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default
374 * constructor Matrix() instead, especially when using one of the non standard
375 * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
376 */
379
380 /** \brief Constructs an initialized 2D vector with given coefficients
381 * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */
382 Matrix(const Scalar& x, const Scalar& y);
383 #endif // end EIGEN_PARSED_BY_DOXYGEN
384
385 /** \brief Constructs an initialized 3D vector with given coefficients
386 * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...)
387 */
389 EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
390 {
393 m_storage.data()[0] = x;
394 m_storage.data()[1] = y;
395 m_storage.data()[2] = z;
396 }
397 /** \brief Constructs an initialized 4D vector with given coefficients
398 * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...)
399 */
401 EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
402 {
405 m_storage.data()[0] = x;
406 m_storage.data()[1] = y;
407 m_storage.data()[2] = z;
408 m_storage.data()[3] = w;
409 }
410
411
412 /** \brief Copy constructor */
414 EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other)
415 { }
416
417 /** \brief Copy constructor for generic expressions.
418 * \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
419 */
420 template<typename OtherDerived>
423 : Base(other.derived())
424 { }
425
427 inline Index innerStride() const EIGEN_NOEXCEPT { return 1; }
429 inline Index outerStride() const EIGEN_NOEXCEPT { return this->innerSize(); }
430
431 /////////// Geometry module ///////////
432
433 template<typename OtherDerived>
436 template<typename OtherDerived>
439
440 // allow to extend Matrix outside Eigen
441 #ifdef EIGEN_MATRIX_PLUGIN
442 #include EIGEN_MATRIX_PLUGIN
443 #endif
444
445 protected:
446 template <typename Derived, typename OtherDerived, bool IsVector>
448
449 using Base::m_storage;
450};
451
452/** \defgroup matrixtypedefs Global matrix typedefs
453 *
454 * \ingroup Core_Module
455 *
456 * %Eigen defines several typedef shortcuts for most common matrix and vector types.
457 *
458 * The general patterns are the following:
459 *
460 * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
461 * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
462 * for complex double.
463 *
464 * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
465 *
466 * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
467 * a fixed-size vector of 4 complex floats.
468 *
469 * With \cpp11, template alias are also defined for common sizes.
470 * They follow the same pattern as above except that the scalar type suffix is replaced by a
471 * template parameter, i.e.:
472 * - `MatrixSize<Type>` where `Size` can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size.
473 * - `MatrixXSize<Type>` and `MatrixSizeX<Type>` where `Size` can be \c 2,\c 3,\c 4 for hybrid dynamic/fixed matrices.
474 * - `VectorSize<Type>` and `RowVectorSize<Type>` for column and row vectors.
475 *
476 * With \cpp11, you can also use fully generic column and row vector types: `Vector<Type,Size>` and `RowVector<Type,Size>`.
477 *
478 * \sa class Matrix
479 */
480
481#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
482/** \ingroup matrixtypedefs */ \
483typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
484/** \ingroup matrixtypedefs */ \
485typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
486/** \ingroup matrixtypedefs */ \
487typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
488
489#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
490/** \ingroup matrixtypedefs */ \
491typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
492/** \ingroup matrixtypedefs */ \
493typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
494
495#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
496EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
497EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
498EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
499EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
500EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
501EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
502EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
503
507EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
508EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
509
510#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
511#undef EIGEN_MAKE_TYPEDEFS
512#undef EIGEN_MAKE_FIXED_TYPEDEFS
513
514#if EIGEN_HAS_CXX11
515
516#define EIGEN_MAKE_TYPEDEFS(Size, SizeSuffix) \
517/** \ingroup matrixtypedefs */ \
518/** \brief \cpp11 */ \
519template <typename Type> \
520using Matrix##SizeSuffix = Matrix<Type, Size, Size>; \
521/** \ingroup matrixtypedefs */ \
522/** \brief \cpp11 */ \
523template <typename Type> \
524using Vector##SizeSuffix = Matrix<Type, Size, 1>; \
525/** \ingroup matrixtypedefs */ \
526/** \brief \cpp11 */ \
527template <typename Type> \
528using RowVector##SizeSuffix = Matrix<Type, 1, Size>;
529
530#define EIGEN_MAKE_FIXED_TYPEDEFS(Size) \
531/** \ingroup matrixtypedefs */ \
532/** \brief \cpp11 */ \
533template <typename Type> \
534using Matrix##Size##X = Matrix<Type, Size, Dynamic>; \
535/** \ingroup matrixtypedefs */ \
536/** \brief \cpp11 */ \
537template <typename Type> \
538using Matrix##X##Size = Matrix<Type, Dynamic, Size>;
539
547
548/** \ingroup matrixtypedefs
549 * \brief \cpp11 */
550template <typename Type, int Size>
551using Vector = Matrix<Type, Size, 1>;
552
553/** \ingroup matrixtypedefs
554 * \brief \cpp11 */
555template <typename Type, int Size>
556using RowVector = Matrix<Type, 1, Size>;
557
558#undef EIGEN_MAKE_TYPEDEFS
559#undef EIGEN_MAKE_FIXED_TYPEDEFS
560
561#endif // EIGEN_HAS_CXX11
562
563} // end namespace Eigen
564
565#endif // EIGEN_MATRIX_H
#define EIGEN_UNALIGNED_VECTORIZE
Definition: ConfigureVectorization.h:186
#define EIGEN_NOEXCEPT_IF(x)
Definition: Macros.h:1429
#define EIGEN_NOEXCEPT
Definition: Macros.h:1428
#define EIGEN_CONSTEXPR
Definition: Macros.h:797
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
Definition: Macros.h:1293
#define EIGEN_STRONG_INLINE
Definition: Macros.h:927
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)
Definition: Matrix.h:481
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix)
Definition: Matrix.h:495
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size)
Definition: Matrix.h:489
#define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
Definition: PlainObjectBase.h:22
#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE)
Definition: StaticAssert.h:157
Base class for all dense matrices, vectors, and arrays.
Definition: DenseBase.h:47
EIGEN_DEVICE_FUNC const T * data() const
Definition: DenseStorage.h:266
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const T &x)
Definition: Matrix.h:329
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar &x, const Scalar &y, const Scalar &z)
Constructs an initialized 3D vector with given coefficients.
Definition: Matrix.h:389
Base::PlainObject PlainObject
Definition: Matrix.h:192
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(internal::constructor_without_unaligned_array_assert)
Definition: Matrix.h:267
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix()
Default constructor.
Definition: Matrix.h:259
DenseStorage< Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options > m_storage
Definition: PlainObjectBase.h:131
EIGEN_DEVICE_FUNC Base & base()
Definition: PlainObjectBase.h:138
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix & operator=(const Matrix &other)
Assigns matrices to each other.
Definition: Matrix.h:206
EIGEN_DEVICE_FUNC Matrix(const RotationBase< OtherDerived, ColsAtCompileTime > &r)
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerStride() const EIGEN_NOEXCEPT
Definition: Matrix.h:429
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const T0 &x, const T1 &y)
Definition: Matrix.h:337
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix & operator=(const EigenBase< OtherDerived > &other)
Copies the generic expression other into *this.
Definition: Matrix.h:236
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerStride() const EIGEN_NOEXCEPT
Definition: Matrix.h:427
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix & operator=(const DenseBase< OtherDerived > &other)
Definition: Matrix.h:223
@ Options
Definition: Matrix.h:188
PlainObjectBase< Matrix > Base
Base class typedef.
Definition: Matrix.h:186
EIGEN_DEVICE_FUNC Matrix & operator=(const RotationBase< OtherDerived, ColsAtCompileTime > &r)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,...
Definition: PlainObjectBase.h:175
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const EigenBase< OtherDerived > &other)
Copy constructor for generic expressions.
Definition: Matrix.h:422
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Matrix &other)
Copy constructor.
Definition: Matrix.h:414
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix & operator=(const ReturnByValue< OtherDerived > &func)
Definition: Matrix.h:243
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar &x, const Scalar &y, const Scalar &z, const Scalar &w)
Constructs an initialized 4D vector with given coefficients.
Definition: Matrix.h:401
Definition: PlainObjectBase.h:100
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _check_template_params()
Definition: PlainObjectBase.h:968
DenseStorage< Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options > m_storage
Definition: PlainObjectBase.h:131
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
internal::traits< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar Scalar
Definition: PlainObjectBase.h:106
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator=(const PlainObjectBase &other)
This is a special case of the templated operator=.
Definition: PlainObjectBase.h:449
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & _set(const DenseBase< OtherDerived > &other)
Copies the value of the expression other into *this with automatic resizing.
Definition: PlainObjectBase.h:777
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:143
Definition: ReturnByValue.h:52
Definition: ForwardDeclarations.h:286
Definition: XprHelper.h:272
@ DontAlign
Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated,...
Definition: Constants.h:325
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:321
const unsigned int PacketAccessBit
Short version: means the expression might be vectorized.
Definition: Constants.h:94
const unsigned int LinearAccessBit
Short version: means the expression can be seen as 1D vector.
Definition: Constants.h:130
const unsigned int DirectAccessBit
Means that the underlying array of coefficients can be directly accessed as a plain strided array.
Definition: Constants.h:155
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:66
Type
Definition: Constants.h:471
const Scalar & y
Definition: MathFunctions.h:821
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
Definition: BFloat16.h:88
The type used to identify a dense storage.
Definition: Constants.h:507
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
The type used to identify a matrix expression.
Definition: Constants.h:522
Definition: PlainObjectBase.h:1001
find_best_packet_helper< Size, typenamepacket_traits< T >::type >::type type
Definition: XprHelper.h:208
Definition: GenericPacketMath.h:107
Definition: XprHelper.h:282
Definition: ForwardDeclarations.h:17
Definition: GenericPacketMath.h:133
Definition: format.h:1552