WPILibC++ 2023.4.3-108-ge5452e3
HouseholderSequence.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
12#define EIGEN_HOUSEHOLDER_SEQUENCE_H
13
14namespace Eigen {
15
16/** \ingroup Householder_Module
17 * \householder_module
18 * \class HouseholderSequence
19 * \brief Sequence of Householder reflections acting on subspaces with decreasing size
20 * \tparam VectorsType type of matrix containing the Householder vectors
21 * \tparam CoeffsType type of vector containing the Householder coefficients
22 * \tparam Side either OnTheLeft (the default) or OnTheRight
23 *
24 * This class represents a product sequence of Householder reflections where the first Householder reflection
25 * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
26 * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
27 * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
28 * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
29 * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
30 * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
31 * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
32 *
33 * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
34 * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
35 * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
36 * v_i \f$ is a vector of the form
37 * \f[
38 * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
39 * \f]
40 * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
41 *
42 * Typical usages are listed below, where H is a HouseholderSequence:
43 * \code
44 * A.applyOnTheRight(H); // A = A * H
45 * A.applyOnTheLeft(H); // A = H * A
46 * A.applyOnTheRight(H.adjoint()); // A = A * H^*
47 * A.applyOnTheLeft(H.adjoint()); // A = H^* * A
48 * MatrixXd Q = H; // conversion to a dense matrix
49 * \endcode
50 * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
51 *
52 * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
53 *
54 * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
55 */
56
57namespace internal {
58
59template<typename VectorsType, typename CoeffsType, int Side>
60struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
61{
62 typedef typename VectorsType::Scalar Scalar;
63 typedef typename VectorsType::StorageIndex StorageIndex;
64 typedef typename VectorsType::StorageKind StorageKind;
65 enum {
66 RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
68 ColsAtCompileTime = RowsAtCompileTime,
69 MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
71 MaxColsAtCompileTime = MaxRowsAtCompileTime,
72 Flags = 0
73 };
74};
75
77
78template<typename VectorsType, typename CoeffsType, int Side>
79struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
80 : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> >
81{
83};
84
85template<typename VectorsType, typename CoeffsType, int Side>
87{
91 {
92 Index start = k+1+h.m_shift;
93 return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
94 }
95};
96
97template<typename VectorsType, typename CoeffsType>
98struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
99{
103 {
104 Index start = k+1+h.m_shift;
105 return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
106 }
107};
108
109template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
110{
113 typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
114 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
115};
116
117} // end namespace internal
118
119template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
120 : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
121{
123
124 public:
125 enum {
130 };
132
133 typedef HouseholderSequence<
136 VectorsType>::type,
139 CoeffsType>::type,
140 Side
142
143 typedef HouseholderSequence<
144 VectorsType,
147 CoeffsType>::type,
148 Side
150
151 typedef HouseholderSequence<
154 VectorsType>::type,
155 CoeffsType,
156 Side
158
159 typedef HouseholderSequence<
162 Side
164
165 /** \brief Constructor.
166 * \param[in] v %Matrix containing the essential parts of the Householder vectors
167 * \param[in] h Vector containing the Householder coefficients
168 *
169 * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
170 * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
171 * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
172 * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
173 * Householder reflections as there are columns.
174 *
175 * \note The %HouseholderSequence object stores \p v and \p h by reference.
176 *
177 * Example: \include HouseholderSequence_HouseholderSequence.cpp
178 * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
179 *
180 * \sa setLength(), setShift()
181 */
183 HouseholderSequence(const VectorsType& v, const CoeffsType& h)
184 : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()),
185 m_shift(0)
186 {
187 }
188
189 /** \brief Copy constructor. */
192 : m_vectors(other.m_vectors),
193 m_coeffs(other.m_coeffs),
194 m_reverse(other.m_reverse),
195 m_length(other.m_length),
196 m_shift(other.m_shift)
197 {
198 }
199
200 /** \brief Number of rows of transformation viewed as a matrix.
201 * \returns Number of rows
202 * \details This equals the dimension of the space that the transformation acts on.
203 */
205 Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
206
207 /** \brief Number of columns of transformation viewed as a matrix.
208 * \returns Number of columns
209 * \details This equals the dimension of the space that the transformation acts on.
210 */
212 Index cols() const EIGEN_NOEXCEPT { return rows(); }
213
214 /** \brief Essential part of a Householder vector.
215 * \param[in] k Index of Householder reflection
216 * \returns Vector containing non-trivial entries of k-th Householder vector
217 *
218 * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
219 * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
220 * \f[
221 * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
222 * \f]
223 * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
224 * passed to the constructor.
225 *
226 * \sa setShift(), shift()
227 */
230 {
231 eigen_assert(k >= 0 && k < m_length);
233 }
234
235 /** \brief %Transpose of the Householder sequence. */
237 {
238 return TransposeReturnType(m_vectors.conjugate(), m_coeffs)
239 .setReverseFlag(!m_reverse)
240 .setLength(m_length)
241 .setShift(m_shift);
242 }
243
244 /** \brief Complex conjugate of the Householder sequence. */
246 {
247 return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
248 .setReverseFlag(m_reverse)
249 .setLength(m_length)
250 .setShift(m_shift);
251 }
252
253 /** \returns an expression of the complex conjugate of \c *this if Cond==true,
254 * returns \c *this otherwise.
255 */
256 template<bool Cond>
260 {
262 return ReturnType(m_vectors.template conjugateIf<Cond>(), m_coeffs.template conjugateIf<Cond>());
263 }
264
265 /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
267 {
268 return AdjointReturnType(m_vectors, m_coeffs.conjugate())
269 .setReverseFlag(!m_reverse)
270 .setLength(m_length)
271 .setShift(m_shift);
272 }
273
274 /** \brief Inverse of the Householder sequence (equals the adjoint). */
275 AdjointReturnType inverse() const { return adjoint(); }
276
277 /** \internal */
278 template<typename DestType>
279 inline EIGEN_DEVICE_FUNC
280 void evalTo(DestType& dst) const
281 {
282 Matrix<Scalar, DestType::RowsAtCompileTime, 1,
283 AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
284 evalTo(dst, workspace);
285 }
286
287 /** \internal */
288 template<typename Dest, typename Workspace>
290 void evalTo(Dest& dst, Workspace& workspace) const
291 {
292 workspace.resize(rows());
293 Index vecs = m_length;
295 {
296 // in-place
297 dst.diagonal().setOnes();
298 dst.template triangularView<StrictlyUpper>().setZero();
299 for(Index k = vecs-1; k >= 0; --k)
300 {
301 Index cornerSize = rows() - k - m_shift;
302 if(m_reverse)
303 dst.bottomRightCorner(cornerSize, cornerSize)
304 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
305 else
306 dst.bottomRightCorner(cornerSize, cornerSize)
307 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
308
309 // clear the off diagonal vector
310 dst.col(k).tail(rows()-k-1).setZero();
311 }
312 // clear the remaining columns if needed
313 for(Index k = 0; k<cols()-vecs ; ++k)
314 dst.col(k).tail(rows()-k-1).setZero();
315 }
316 else if(m_length>BlockSize)
317 {
318 dst.setIdentity(rows(), rows());
319 if(m_reverse)
320 applyThisOnTheLeft(dst,workspace,true);
321 else
322 applyThisOnTheLeft(dst,workspace,true);
323 }
324 else
325 {
326 dst.setIdentity(rows(), rows());
327 for(Index k = vecs-1; k >= 0; --k)
328 {
329 Index cornerSize = rows() - k - m_shift;
330 if(m_reverse)
331 dst.bottomRightCorner(cornerSize, cornerSize)
332 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
333 else
334 dst.bottomRightCorner(cornerSize, cornerSize)
335 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
336 }
337 }
338 }
339
340 /** \internal */
341 template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
342 {
344 applyThisOnTheRight(dst, workspace);
345 }
346
347 /** \internal */
348 template<typename Dest, typename Workspace>
349 inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
350 {
351 workspace.resize(dst.rows());
352 for(Index k = 0; k < m_length; ++k)
353 {
354 Index actual_k = m_reverse ? m_length-k-1 : k;
355 dst.rightCols(rows()-m_shift-actual_k)
356 .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
357 }
358 }
359
360 /** \internal */
361 template<typename Dest> inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const
362 {
364 applyThisOnTheLeft(dst, workspace, inputIsIdentity);
365 }
366
367 /** \internal */
368 template<typename Dest, typename Workspace>
369 inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const
370 {
371 if(inputIsIdentity && m_reverse)
372 inputIsIdentity = false;
373 // if the entries are large enough, then apply the reflectors by block
374 if(m_length>=BlockSize && dst.cols()>1)
375 {
376 // Make sure we have at least 2 useful blocks, otherwise it is point-less:
377 Index blockSize = m_length<Index(2*BlockSize) ? (m_length+1)/2 : Index(BlockSize);
378 for(Index i = 0; i < m_length; i+=blockSize)
379 {
380 Index end = m_reverse ? (std::min)(m_length,i+blockSize) : m_length-i;
381 Index k = m_reverse ? i : (std::max)(Index(0),end-blockSize);
382 Index bs = end-k;
383 Index start = k + m_shift;
384
386 SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start,
387 Side==OnTheRight ? start : k,
388 Side==OnTheRight ? bs : m_vectors.rows()-start,
389 Side==OnTheRight ? m_vectors.cols()-start : bs);
390 typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1);
391
392 Index dstStart = dst.rows()-rows()+m_shift+k;
393 Index dstRows = rows()-m_shift-k;
394 Block<Dest,Dynamic,Dynamic> sub_dst(dst,
395 dstStart,
396 inputIsIdentity ? dstStart : 0,
397 dstRows,
398 inputIsIdentity ? dstRows : dst.cols());
399 apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse);
400 }
401 }
402 else
403 {
404 workspace.resize(dst.cols());
405 for(Index k = 0; k < m_length; ++k)
406 {
407 Index actual_k = m_reverse ? k : m_length-k-1;
408 Index dstStart = rows()-m_shift-actual_k;
409 dst.bottomRightCorner(dstStart, inputIsIdentity ? dstStart : dst.cols())
410 .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
411 }
412 }
413 }
414
415 /** \brief Computes the product of a Householder sequence with a matrix.
416 * \param[in] other %Matrix being multiplied.
417 * \returns Expression object representing the product.
418 *
419 * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
420 * and \f$ M \f$ is the matrix \p other.
421 */
422 template<typename OtherDerived>
424 {
428 return res;
429 }
430
431 template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
432
433 /** \brief Sets the length of the Householder sequence.
434 * \param [in] length New value for the length.
435 *
436 * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
437 * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
438 * is smaller. After this function is called, the length equals \p length.
439 *
440 * \sa length()
441 */
444 {
446 return *this;
447 }
448
449 /** \brief Sets the shift of the Householder sequence.
450 * \param [in] shift New value for the shift.
451 *
452 * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
453 * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
454 * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
455 * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
456 * Householder reflection.
457 *
458 * \sa shift()
459 */
462 {
463 m_shift = shift;
464 return *this;
465 }
466
468 Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
469
471 Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
472
473 /* Necessary for .adjoint() and .conjugate() */
474 template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
475
476 protected:
477
478 /** \internal
479 * \brief Sets the reverse flag.
480 * \param [in] reverse New value of the reverse flag.
481 *
482 * By default, the reverse flag is not set. If the reverse flag is set, then this object represents
483 * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
484 * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$.
485 *
486 * \sa reverseFlag(), transpose(), adjoint()
487 */
489 {
491 return *this;
492 }
493
494 bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */
495
496 typename VectorsType::Nested m_vectors;
497 typename CoeffsType::Nested m_coeffs;
501 enum { BlockSize = 48 };
502};
503
504/** \brief Computes the product of a matrix with a Householder sequence.
505 * \param[in] other %Matrix being multiplied.
506 * \param[in] h %HouseholderSequence being multiplied.
507 * \returns Expression object representing the product.
508 *
509 * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
510 * Householder sequence represented by \p h.
511 */
512template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
514{
517 h.applyThisOnTheRight(res);
518 return res;
519}
520
521/** \ingroup Householder_Module \householder_module
522 * \brief Convenience function for constructing a Householder sequence.
523 * \returns A HouseholderSequence constructed from the specified arguments.
524 */
525template<typename VectorsType, typename CoeffsType>
527{
529}
530
531/** \ingroup Householder_Module \householder_module
532 * \brief Convenience function for constructing a Householder sequence.
533 * \returns A HouseholderSequence constructed from the specified arguments.
534 * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
535 * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
536 */
537template<typename VectorsType, typename CoeffsType>
539{
541}
542
543} // end namespace Eigen
544
545#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
EIGEN_DEVICE_FUNC CastXpr< NewType >::Type cast() const
Definition: CommonCwiseUnaryOps.h:62
#define EIGEN_NOEXCEPT
Definition: Macros.h:1428
#define EIGEN_CONSTEXPR
Definition: Macros.h:797
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define eigen_assert(x)
Definition: Macros.h:1047
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:105
\householder_module
Definition: HouseholderSequence.h:121
AdjointReturnType inverse() const
Inverse of the Householder sequence (equals the adjoint).
Definition: HouseholderSequence.h:275
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Number of columns of transformation viewed as a matrix.
Definition: HouseholderSequence.h:212
EIGEN_DEVICE_FUNC HouseholderSequence(const VectorsType &v, const CoeffsType &h)
Constructor.
Definition: HouseholderSequence.h:183
Index m_length
Definition: HouseholderSequence.h:499
HouseholderSequence & setReverseFlag(bool reverse)
Definition: HouseholderSequence.h:488
EIGEN_DEVICE_FUNC HouseholderSequence(const HouseholderSequence &other)
Copy constructor.
Definition: HouseholderSequence.h:191
internal::traits< HouseholderSequence >::Scalar Scalar
Definition: HouseholderSequence.h:131
HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > ConjugateReturnType
Definition: HouseholderSequence.h:141
bool m_reverse
Definition: HouseholderSequence.h:498
CoeffsType::Nested m_coeffs
Definition: HouseholderSequence.h:497
void applyThisOnTheRight(Dest &dst) const
Definition: HouseholderSequence.h:341
EIGEN_DEVICE_FUNC const EssentialVectorType essentialVector(Index k) const
Essential part of a Householder vector.
Definition: HouseholderSequence.h:229
VectorsType::Nested m_vectors
Definition: HouseholderSequence.h:496
EIGEN_DEVICE_FUNC void evalTo(Dest &dst, Workspace &workspace) const
Definition: HouseholderSequence.h:290
EIGEN_DEVICE_FUNC Index shift() const
Returns the shift of the Householder sequence.
Definition: HouseholderSequence.h:471
HouseholderSequence< typename internal::add_const< VectorsType >::type, typename internal::add_const< CoeffsType >::type, Side > ConstHouseholderSequence
Definition: HouseholderSequence.h:163
HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, CoeffsType, Side > TransposeReturnType
Definition: HouseholderSequence.h:157
EIGEN_DEVICE_FUNC void evalTo(DestType &dst) const
Definition: HouseholderSequence.h:280
@ ColsAtCompileTime
Definition: HouseholderSequence.h:127
@ MaxColsAtCompileTime
Definition: HouseholderSequence.h:129
@ MaxRowsAtCompileTime
Definition: HouseholderSequence.h:128
@ RowsAtCompileTime
Definition: HouseholderSequence.h:126
internal::matrix_type_times_scalar_type< Scalar, OtherDerived >::Type operator*(const MatrixBase< OtherDerived > &other) const
Computes the product of a Householder sequence with a matrix.
Definition: HouseholderSequence.h:423
EIGEN_DEVICE_FUNC Index length() const
Returns the length of the Householder sequence.
Definition: HouseholderSequence.h:468
Index m_shift
Definition: HouseholderSequence.h:500
ConjugateReturnType conjugate() const
Complex conjugate of the Householder sequence.
Definition: HouseholderSequence.h:245
void applyThisOnTheLeft(Dest &dst, bool inputIsIdentity=false) const
Definition: HouseholderSequence.h:361
@ BlockSize
Definition: HouseholderSequence.h:501
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Number of rows of transformation viewed as a matrix.
Definition: HouseholderSequence.h:205
bool reverseFlag() const
Definition: HouseholderSequence.h:494
TransposeReturnType transpose() const
Transpose of the Householder sequence.
Definition: HouseholderSequence.h:236
EIGEN_DEVICE_FUNC HouseholderSequence & setShift(Index shift)
Sets the shift of the Householder sequence.
Definition: HouseholderSequence.h:461
EIGEN_DEVICE_FUNC internal::conditional< Cond, ConjugateReturnType, ConstHouseholderSequence >::type conjugateIf() const
Definition: HouseholderSequence.h:259
EIGEN_DEVICE_FUNC HouseholderSequence & setLength(Index length)
Sets the length of the Householder sequence.
Definition: HouseholderSequence.h:443
AdjointReturnType adjoint() const
Adjoint (conjugate transpose) of the Householder sequence.
Definition: HouseholderSequence.h:266
void applyThisOnTheLeft(Dest &dst, Workspace &workspace, bool inputIsIdentity=false) const
Definition: HouseholderSequence.h:369
void applyThisOnTheRight(Dest &dst, Workspace &workspace) const
Definition: HouseholderSequence.h:349
HouseholderSequence< VectorsType, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > AdjointReturnType
Definition: HouseholderSequence.h:149
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:143
Expression of the transpose of a matrix.
Definition: Transpose.h:54
type
Definition: core.h:575
HouseholderSequence< VectorsType, CoeffsType > householderSequence(const VectorsType &v, const CoeffsType &h)
\
Definition: HouseholderSequence.h:526
HouseholderSequence< VectorsType, CoeffsType, OnTheRight > rightHouseholderSequence(const VectorsType &v, const CoeffsType &h)
\
Definition: HouseholderSequence.h:538
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:319
@ AutoAlign
Align the matrix itself if it is vectorizable fixed-size.
Definition: Constants.h:323
@ OnTheLeft
Apply transformation on the left.
Definition: Constants.h:332
@ OnTheRight
Apply transformation on the right.
Definition: Constants.h:334
constexpr common_t< T1, T2 > max(const T1 x, const T2 y) noexcept
Compile-time pairwise maximum function.
Definition: max.hpp:35
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_DEVICE_FUNC bool is_same_dense(const T1 &mat1, const T2 &mat2, typename enable_if< possibly_same_dense< T1, T2 >::value >::type *=0)
Definition: XprHelper.h:695
void apply_block_householder_on_the_left(MatrixType &mat, const VectorsType &vectors, const CoeffsType &hCoeffs, bool forward)
Definition: BlockHouseholder.h:86
static EIGEN_DEPRECATED const end_t end
Definition: IndexedViewHelper.h:181
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const Product< SparseDerived, PermDerived, AliasFreeProduct > operator*(const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
Definition: SparsePermutation.h:147
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
static constexpr const unit_t< compound_unit< energy::joule, time::seconds > > h(6.626070040e-34)
Planck constant.
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:30
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:806
Definition: HouseholderSequence.h:76
Definition: Meta.h:109
HouseholderSequenceShape Shape
Definition: HouseholderSequence.h:82
Definition: CoreEvaluators.h:71
Definition: CoreEvaluators.h:80
Transpose< Block< const VectorsType, 1, Dynamic > > EssentialVectorType
Definition: HouseholderSequence.h:100
static const EssentialVectorType essentialVector(const HouseholderSequenceType &h, Index k)
Definition: HouseholderSequence.h:102
HouseholderSequence< VectorsType, CoeffsType, OnTheRight > HouseholderSequenceType
Definition: HouseholderSequence.h:101
Definition: HouseholderSequence.h:87
HouseholderSequence< VectorsType, CoeffsType, OnTheLeft > HouseholderSequenceType
Definition: HouseholderSequence.h:89
Block< const VectorsType, Dynamic, 1 > EssentialVectorType
Definition: HouseholderSequence.h:88
static EIGEN_DEVICE_FUNC const EssentialVectorType essentialVector(const HouseholderSequenceType &h, Index k)
Definition: HouseholderSequence.h:90
Definition: XprHelper.h:679
Definition: HouseholderSequence.h:110
Matrix< ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime > Type
Definition: HouseholderSequence.h:114
ScalarBinaryOpTraits< OtherScalarType, typenameMatrixType::Scalar >::ReturnType ResultScalar
Definition: HouseholderSequence.h:112
T type
Definition: Meta.h:126
VectorsType::StorageIndex StorageIndex
Definition: HouseholderSequence.h:63
VectorsType::StorageKind StorageKind
Definition: HouseholderSequence.h:64
VectorsType::Scalar Scalar
Definition: HouseholderSequence.h:62
Definition: ForwardDeclarations.h:17
Definition: Meta.h:96