WPILibC++ 2023.4.3-108-ge5452e3
GeneralMatrixMatrixTriangular.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
11#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
12
13namespace Eigen {
14
15template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
17
18namespace internal {
19
20/**********************************************************************
21* This file implements a general A * B product while
22* evaluating only one triangular part of the product.
23* This is a more general version of self adjoint product (C += A A^T)
24* as the level 3 SYRK Blas routine.
25**********************************************************************/
26
27// forward declarations (defined at the end of this file)
28template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int ResInnerStride, int UpLo>
29struct tribb_kernel;
30
31/* Optimized matrix-matrix product evaluating only one triangular half */
32template <typename Index,
33 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
34 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
35 int ResStorageOrder, int ResInnerStride, int UpLo, int Version = Specialized>
37
38// as usual if the result is row major => we transpose the product
39template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
40 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
41 int ResInnerStride, int UpLo, int Version>
42struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,ResInnerStride,UpLo,Version>
43{
45 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
46 const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resIncr, Index resStride,
47 const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
48 {
50 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
51 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
52 ColMajor, ResInnerStride, UpLo==Lower?Upper:Lower>
53 ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking);
54 }
55};
56
57template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
58 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
59 int ResInnerStride, int UpLo, int Version>
60struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,ResInnerStride,UpLo,Version>
61{
63 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
64 const RhsScalar* _rhs, Index rhsStride,
65 ResScalar* _res, Index resIncr, Index resStride,
66 const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
67 {
69
73 LhsMapper lhs(_lhs,lhsStride);
74 RhsMapper rhs(_rhs,rhsStride);
75 ResMapper res(_res, resStride, resIncr);
76
77 Index kc = blocking.kc();
78 Index mc = (std::min)(size,blocking.mc());
79
80 // !!! mc must be a multiple of nr:
81 if(mc > Traits::nr)
82 mc = (mc/Traits::nr)*Traits::nr;
83
84 std::size_t sizeA = kc*mc;
85 std::size_t sizeB = kc*size;
86
87 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
88 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
89
94
95 for(Index k2=0; k2<depth; k2+=kc)
96 {
97 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
98
99 // note that the actual rhs is the transpose/adjoint of mat
100 pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size);
101
102 for(Index i2=0; i2<size; i2+=mc)
103 {
104 const Index actual_mc = (std::min)(i2+mc,size)-i2;
105
106 pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
107
108 // the selected actual_mc * size panel of res is split into three different part:
109 // 1 - before the diagonal => processed with gebp or skipped
110 // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
111 // 3 - after the diagonal => processed with gebp or skipped
112 if (UpLo==Lower)
113 gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc,
114 (std::min)(size,i2), alpha, -1, -1, 0, 0);
115
116 sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);
117
118 if (UpLo==Upper)
119 {
120 Index j2 = i2+actual_mc;
121 gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc,
122 actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0);
123 }
124 }
125 }
126 }
127};
128
129// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
130// This kernel is built on top of the gebp kernel:
131// - the current destination block is processed per panel of actual_mc x BlockSize
132// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
133// - then, as usual, each panel is split into three parts along the diagonal,
134// the sub blocks above and below the diagonal are processed as usual,
135// while the triangular block overlapping the diagonal is evaluated into a
136// small temporary buffer which is then accumulated into the result using a
137// triangular traversal.
138template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int ResInnerStride, int UpLo>
140{
142 typedef typename Traits::ResScalar ResScalar;
143
144 enum {
146 };
147 void operator()(ResScalar* _res, Index resIncr, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
148 {
151 ResMapper res(_res, resStride, resIncr);
154
156
157 // let's process the block per panel of actual_mc x BlockSize,
158 // again, each is split into three parts, etc.
159 for (Index j=0; j<size; j+=BlockSize)
160 {
161 Index actualBlockSize = std::min<Index>(BlockSize,size - j);
162 const RhsScalar* actual_b = blockB+j*depth;
163
164 if(UpLo==Upper)
165 gebp_kernel1(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha,
166 -1, -1, 0, 0);
167
168 // selfadjoint micro block
169 {
170 Index i = j;
171 buffer.setZero();
172 // 1 - apply the kernel on the temporary buffer
173 gebp_kernel2(BufferMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
174 -1, -1, 0, 0);
175
176 // 2 - triangular accumulation
177 for(Index j1=0; j1<actualBlockSize; ++j1)
178 {
179 typename ResMapper::LinearMapper r = res.getLinearMapper(i,j+j1);
180 for(Index i1=UpLo==Lower ? j1 : 0;
181 UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
182 r(i1) += buffer(i1,j1);
183 }
184 }
185
186 if(UpLo==Lower)
187 {
188 Index i = j+actualBlockSize;
189 gebp_kernel1(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i,
190 depth, actualBlockSize, alpha, -1, -1, 0, 0);
191 }
192 }
193 }
194};
195
196} // end namespace internal
197
198// high level API
199
200template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
202
203
204template<typename MatrixType, typename ProductType, int UpLo>
205struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
206{
207 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
208 {
209 typedef typename MatrixType::Scalar Scalar;
210
212 typedef internal::blas_traits<Lhs> LhsBlasTraits;
213 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
214 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
215 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
216
218 typedef internal::blas_traits<Rhs> RhsBlasTraits;
219 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
220 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
221 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
222
223 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
224
225 if(!beta)
226 mat.template triangularView<UpLo>().setZero();
227
228 enum {
230 UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
231 UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
232 };
233
235 ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
236 (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
237 if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
238
240 ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
241 (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
242 if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
243
244
245 selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
246 LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
247 RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
248 ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
249 }
250};
251
252template<typename MatrixType, typename ProductType, int UpLo>
253struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
254{
255 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
256 {
258 typedef internal::blas_traits<Lhs> LhsBlasTraits;
259 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
260 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
261 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
262
264 typedef internal::blas_traits<Rhs> RhsBlasTraits;
265 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
266 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
267 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
268
269 typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
270
271 if(!beta)
272 mat.template triangularView<UpLo>().setZero();
273
274 enum {
276 LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
277 RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0,
278 SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0
279 };
280
281 Index size = mat.cols();
282 if(SkipDiag)
283 size--;
284 Index depth = actualLhs.cols();
285
286 typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
287 MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType;
288
289 BlockingType blocking(size, size, depth, 1, false);
290
292 typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
293 typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
294 IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo&(Lower|Upper)>
295 ::run(size, depth,
296 &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(),
297 &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(),
298 mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? mat.innerStride() : mat.outerStride() ) : 0),
299 mat.innerStride(), mat.outerStride(), actualAlpha, blocking);
300 }
301};
302
303template<typename MatrixType, unsigned int UpLo>
304template<typename ProductType>
305EIGEN_DEVICE_FUNC TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
306{
307 EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED);
308 eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
309
310 general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
311
312 return derived();
313}
314
315} // end namespace Eigen
316
317#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
#define EIGEN_PLAIN_ENUM_MAX(a, b)
Definition: Macros.h:1299
#define EIGEN_PLAIN_ENUM_MIN(a, b)
Definition: Macros.h:1298
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:986
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_STRONG_INLINE
Definition: Macros.h:927
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
Definition: Memory.h:768
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
constexpr common_return_t< T1, T2 > beta(const T1 a, const T2 b) noexcept
Compile-time beta function.
Definition: beta.hpp:36
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
Definition: BlasUtil.h:270
Definition: BlasUtil.h:389
Definition: GeneralBlockPanelKernel.h:419
ScalarBinaryOpTraits< LhsScalar, RhsScalar >::ReturnType ResScalar
Definition: GeneralBlockPanelKernel.h:423
Definition: GeneralMatrixMatrix.h:248
Definition: GeneralMatrixMatrix.h:252
RhsScalar * blockB()
Definition: GeneralMatrixMatrix.h:275
Index kc() const
Definition: GeneralMatrixMatrix.h:272
Index mc() const
Definition: GeneralMatrixMatrix.h:270
LhsScalar * blockA()
Definition: GeneralMatrixMatrix.h:274
\rst A contiguous memory buffer with an optional growing ability.
Definition: core.h:862
FMT_CONSTEXPR auto data() noexcept -> T *
Returns a pointer to the buffer data.
Definition: core.h:908
@ UnitDiag
Matrix has ones on the diagonal; to be used in combination with Lower or Upper.
Definition: Constants.h:213
@ ZeroDiag
Matrix has zeros on the diagonal; to be used in combination with Lower or Upper.
Definition: Constants.h:215
@ Lower
View matrix as a lower triangular matrix.
Definition: Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition: Constants.h:211
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:319
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:321
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:66
constexpr common_t< T1, T2 > max(const T1 x, const T2 y) noexcept
Compile-time pairwise maximum function.
Definition: max.hpp:35
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
@ Specialized
Definition: Constants.h:310
Definition: Eigen_Colamd.h:50
static constexpr uint64_t k2
Definition: Hashing.h:172
Holds information about the various numeric (i.e.
Definition: NumTraits.h:233
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:806
static void run(MatrixType &mat, const ProductType &prod, const typename MatrixType::Scalar &alpha, bool beta)
Definition: GeneralMatrixMatrixTriangular.h:255
static void run(MatrixType &mat, const ProductType &prod, const typename MatrixType::Scalar &alpha, bool beta)
Definition: GeneralMatrixMatrixTriangular.h:207
Definition: GeneralMatrixMatrixTriangular.h:201
const T type
Definition: Meta.h:214
Definition: BlasUtil.h:403
Definition: GeneralBlockPanelKernel.h:1058
Definition: BlasUtil.h:28
Definition: BlasUtil.h:25
Definition: GeneralProduct.h:161
static EIGEN_STRONG_INLINE void run(Index size, Index depth, const LhsScalar *lhs, Index lhsStride, const RhsScalar *rhs, Index rhsStride, ResScalar *res, Index resIncr, Index resStride, const ResScalar &alpha, level3_blocking< RhsScalar, LhsScalar > &blocking)
Definition: GeneralMatrixMatrixTriangular.h:45
static EIGEN_STRONG_INLINE void run(Index size, Index depth, const LhsScalar *_lhs, Index lhsStride, const RhsScalar *_rhs, Index rhsStride, ResScalar *_res, Index resIncr, Index resStride, const ResScalar &alpha, level3_blocking< LhsScalar, RhsScalar > &blocking)
Definition: GeneralMatrixMatrixTriangular.h:63
Definition: GeneralMatrixMatrixTriangular.h:36
T type
Definition: Meta.h:126
Definition: ForwardDeclarations.h:17
Definition: GeneralMatrixMatrixTriangular.h:140
Traits::ResScalar ResScalar
Definition: GeneralMatrixMatrixTriangular.h:142
gebp_traits< LhsScalar, RhsScalar, ConjLhs, ConjRhs > Traits
Definition: GeneralMatrixMatrixTriangular.h:141
void operator()(ResScalar *_res, Index resIncr, Index resStride, const LhsScalar *blockA, const RhsScalar *blockB, Index size, Index depth, const ResScalar &alpha)
Definition: GeneralMatrixMatrixTriangular.h:147
@ BlockSize
Definition: GeneralMatrixMatrixTriangular.h:145
Definition: GeneralMatrixMatrixTriangular.h:16