WPILibC++ 2023.4.3-108-ge5452e3
GeneralMatrixMatrix.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
11#define EIGEN_GENERAL_MATRIX_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
18
19/* Specialization for a row-major destination matrix => simple transposition of the product */
20template<
21 typename Index,
22 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
23 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
24 int ResInnerStride>
25struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,ResInnerStride>
26{
28
31 Index rows, Index cols, Index depth,
32 const LhsScalar* lhs, Index lhsStride,
33 const RhsScalar* rhs, Index rhsStride,
34 ResScalar* res, Index resIncr, Index resStride,
35 ResScalar alpha,
38 {
39 // transpose the product such that the result is column major
41 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
42 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
43 ColMajor,ResInnerStride>
44 ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking,info);
45 }
46};
47
48/* Specialization for a col-major destination matrix
49 * => Blocking algorithm following Goto's paper */
50template<
51 typename Index,
52 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
53 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
54 int ResInnerStride>
55struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,ResInnerStride>
56{
57
59
61static void run(Index rows, Index cols, Index depth,
62 const LhsScalar* _lhs, Index lhsStride,
63 const RhsScalar* _rhs, Index rhsStride,
64 ResScalar* _res, Index resIncr, Index resStride,
65 ResScalar alpha,
68{
72 LhsMapper lhs(_lhs, lhsStride);
73 RhsMapper rhs(_rhs, rhsStride);
74 ResMapper res(_res, resStride, resIncr);
75
76 Index kc = blocking.kc(); // cache block size along the K direction
77 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
78 Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction
79
83
84#ifdef EIGEN_HAS_OPENMP
85 if(info)
86 {
87 // this is the parallel version!
88 int tid = omp_get_thread_num();
89 int threads = omp_get_num_threads();
90
91 LhsScalar* blockA = blocking.blockA();
92 eigen_internal_assert(blockA!=0);
93
94 std::size_t sizeB = kc*nc;
95 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0);
96
97 // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
98 for(Index k=0; k<depth; k+=kc)
99 {
100 const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
101
102 // In order to reduce the chance that a thread has to wait for the other,
103 // let's start by packing B'.
104 pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc);
105
106 // Pack A_k to A' in a parallel fashion:
107 // each thread packs the sub block A_k,i to A'_i where i is the thread id.
108
109 // However, before copying to A'_i, we have to make sure that no other thread is still using it,
110 // i.e., we test that info[tid].users equals 0.
111 // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
112 while(info[tid].users!=0) {}
113 info[tid].users = threads;
114
115 pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);
116
117 // Notify the other threads that the part A'_i is ready to go.
118 info[tid].sync = k;
119
120 // Computes C_i += A' * B' per A'_i
121 for(int shift=0; shift<threads; ++shift)
122 {
123 int i = (tid+shift)%threads;
124
125 // At this point we have to make sure that A'_i has been updated by the thread i,
126 // we use testAndSetOrdered to mimic a volatile access.
127 // However, no need to wait for the B' part which has been updated by the current thread!
128 if (shift>0) {
129 while(info[i].sync!=k) {
130 }
131 }
132
133 gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
134 }
135
136 // Then keep going as usual with the remaining B'
137 for(Index j=nc; j<cols; j+=nc)
138 {
139 const Index actual_nc = (std::min)(j+nc,cols)-j;
140
141 // pack B_k,j to B'
142 pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc);
143
144 // C_j += A' * B'
145 gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha);
146 }
147
148 // Release all the sub blocks A'_i of A' for the current thread,
149 // i.e., we simply decrement the number of users by 1
150 for(Index i=0; i<threads; ++i)
152 #pragma omp atomic
153#endif
154 info[i].users -= 1;
155 }
156 }
157 else
158#endif // EIGEN_HAS_OPENMP
159 {
161
162 // this is the sequential version!
163 std::size_t sizeA = kc*mc;
164 std::size_t sizeB = kc*nc;
165
166 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
167 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
168
169 const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;
170
171 // For each horizontal panel of the rhs, and corresponding panel of the lhs...
172 for(Index i2=0; i2<rows; i2+=mc)
173 {
174 const Index actual_mc = (std::min)(i2+mc,rows)-i2;
175
176 for(Index k2=0; k2<depth; k2+=kc)
177 {
178 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
179
180 // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
181 // => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching)
182 // Note that this panel will be read as many times as the number of blocks in the rhs's
183 // horizontal panel which is, in practice, a very low number.
184 pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);
185
186 // For each kc x nc block of the rhs's horizontal panel...
187 for(Index j2=0; j2<cols; j2+=nc)
188 {
189 const Index actual_nc = (std::min)(j2+nc,cols)-j2;
190
191 // We pack the rhs's block into a sequential chunk of memory (L2 caching)
192 // Note that this block will be read a very high number of times, which is equal to the number of
193 // micro horizontal panel of the large rhs's panel (e.g., rows/12 times).
194 if((!pack_rhs_once) || i2==0)
195 pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);
196
197 // Everything is packed, we can now call the panel * block kernel:
198 gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
199 }
200 }
201 }
202 }
203}
204
205};
206
207/*********************************************************************************
208* Specialization of generic_product_impl for "large" GEMM, i.e.,
209* implementation of the high level wrapper to general_matrix_matrix_product
210**********************************************************************************/
211
212template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
214{
215 gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking)
216 : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
217 {}
218
219 void initParallelSession(Index num_threads) const
220 {
221 m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads);
222 m_blocking.allocateA();
223 }
224
225 void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
226 {
227 if(cols==-1)
228 cols = m_rhs.cols();
229
230 Gemm::run(rows, cols, m_lhs.cols(),
231 &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
232 &m_rhs.coeffRef(0,col), m_rhs.outerStride(),
233 (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.innerStride(), m_dest.outerStride(),
235 }
236
237 typedef typename Gemm::Traits Traits;
238
239 protected:
240 const Lhs& m_lhs;
241 const Rhs& m_rhs;
242 Dest& m_dest;
244 BlockingType& m_blocking;
245};
246
247template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
248bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
249
250template<typename _LhsScalar, typename _RhsScalar>
252{
253 typedef _LhsScalar LhsScalar;
254 typedef _RhsScalar RhsScalar;
255
256 protected:
257 LhsScalar* m_blockA;
258 RhsScalar* m_blockB;
259
263
264 public:
265
267 : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0)
268 {}
269
270 inline Index mc() const { return m_mc; }
271 inline Index nc() const { return m_nc; }
272 inline Index kc() const { return m_kc; }
273
274 inline LhsScalar* blockA() { return m_blockA; }
275 inline RhsScalar* blockB() { return m_blockB; }
276};
277
278template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
279class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */>
280 : public level3_blocking<
281 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
282 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
283{
284 enum {
285 Transpose = StorageOrder==RowMajor,
286 ActualRows = Transpose ? MaxCols : MaxRows,
287 ActualCols = Transpose ? MaxRows : MaxCols
288 };
292 enum {
293 SizeA = ActualRows * MaxDepth,
294 SizeB = ActualCols * MaxDepth
295 };
296
297#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
298 EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA];
299 EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB];
300#else
301 EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
302 EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
303#endif
304
305 public:
306
307 gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/)
308 {
309 this->m_mc = ActualRows;
310 this->m_nc = ActualCols;
311 this->m_kc = MaxDepth;
312#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
313 this->m_blockA = m_staticA;
314 this->m_blockB = m_staticB;
315#else
316 this->m_blockA = reinterpret_cast<LhsScalar*>((internal::UIntPtr(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
317 this->m_blockB = reinterpret_cast<RhsScalar*>((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
318#endif
319 }
320
322 {}
323
324 inline void allocateA() {}
325 inline void allocateB() {}
326 inline void allocateAll() {}
327};
328
329template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
330class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
331 : public level3_blocking<
332 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
333 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
334{
335 enum {
336 Transpose = StorageOrder==RowMajor
337 };
341
342 Index m_sizeA;
343 Index m_sizeB;
344
345 public:
346
347 gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
348 {
349 this->m_mc = Transpose ? cols : rows;
350 this->m_nc = Transpose ? rows : cols;
351 this->m_kc = depth;
352
353 if(l3_blocking)
354 {
355 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
356 }
357 else // no l3 blocking
358 {
359 Index n = this->m_nc;
360 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads);
361 }
362
363 m_sizeA = this->m_mc * this->m_kc;
364 m_sizeB = this->m_kc * this->m_nc;
365 }
366
367 void initParallel(Index rows, Index cols, Index depth, Index num_threads)
368 {
369 this->m_mc = Transpose ? cols : rows;
370 this->m_nc = Transpose ? rows : cols;
371 this->m_kc = depth;
372
373 eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0);
374 Index m = this->m_mc;
375 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
376 m_sizeA = this->m_mc * this->m_kc;
377 m_sizeB = this->m_kc * this->m_nc;
378 }
379
381 {
382 if(this->m_blockA==0)
383 this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
384 }
385
387 {
388 if(this->m_blockB==0)
389 this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
390 }
391
393 {
394 allocateA();
395 allocateB();
396 }
397
399 {
400 aligned_delete(this->m_blockA, m_sizeA);
401 aligned_delete(this->m_blockB, m_sizeB);
402 }
403};
404
405} // end namespace internal
406
407namespace internal {
408
409template<typename Lhs, typename Rhs>
411 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
412{
414 typedef typename Lhs::Scalar LhsScalar;
415 typedef typename Rhs::Scalar RhsScalar;
416
420
424
425 enum {
426 MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
427 };
428
430
431 template<typename Dst>
432 static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
433 {
434 // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=404 for a discussion and helper program
435 // to determine the following heuristic.
436 // EIGEN_GEMM_TO_COEFFBASED_THRESHOLD is typically defined to 20 in GeneralProduct.h,
437 // unless it has been specialized by the user or for a given architecture.
438 // Note that the condition rhs.rows()>0 was required because lazy product is (was?) not happy with empty inputs.
439 // I'm not sure it is still required.
440 if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0)
441 lazyproduct::eval_dynamic(dst, lhs, rhs, internal::assign_op<typename Dst::Scalar,Scalar>());
442 else
443 {
444 dst.setZero();
445 scaleAndAddTo(dst, lhs, rhs, Scalar(1));
446 }
447 }
448
449 template<typename Dst>
450 static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
451 {
452 if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0)
453 lazyproduct::eval_dynamic(dst, lhs, rhs, internal::add_assign_op<typename Dst::Scalar,Scalar>());
454 else
455 scaleAndAddTo(dst,lhs, rhs, Scalar(1));
456 }
457
458 template<typename Dst>
459 static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
460 {
461 if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0)
462 lazyproduct::eval_dynamic(dst, lhs, rhs, internal::sub_assign_op<typename Dst::Scalar,Scalar>());
463 else
464 scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
465 }
466
467 template<typename Dest>
468 static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
469 {
470 eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
471 if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0)
472 return;
473
474 if (dst.cols() == 1)
475 {
476 // Fallback to GEMV if either the lhs or rhs is a runtime vector
477 typename Dest::ColXpr dst_vec(dst.col(0));
479 ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha);
480 }
481 else if (dst.rows() == 1)
482 {
483 // Fallback to GEMV if either the lhs or rhs is a runtime vector
484 typename Dest::RowXpr dst_vec(dst.row(0));
486 ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha);
487 }
488
489 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
490 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
491
492 Scalar actualAlpha = combine_scalar_factors(alpha, a_lhs, a_rhs);
493
495 Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
496
498 Scalar, Index,
500 Index,
501 LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
502 RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
503 (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,
504 Dest::InnerStrideAtCompileTime>,
505 ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
506
507 BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
508 internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
509 (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit);
510 }
511};
512
513} // end namespace internal
514
515} // end namespace Eigen
516
517#endif // EIGEN_GENERAL_MATRIX_MATRIX_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:1097
Block< Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajor > RowXpr
Definition: BlockMethods.h:17
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RowXpr row(Index i)
This is the const version of row(). *‍/.
Definition: BlockMethods.h:1118
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
Definition: BlockMethods.h:14
#define EIGEN_ALIGN_MAX
Definition: ConfigureVectorization.h:157
#define EIGEN_DEFAULT_ALIGN_BYTES
Definition: ConfigureVectorization.h:181
#define EIGEN_GEMM_TO_COEFFBASED_THRESHOLD
Definition: GeneralProduct.h:28
#define eigen_internal_assert(x)
Definition: Macros.h:1053
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:1086
#define EIGEN_HAS_CXX11_ATOMIC
Definition: Macros.h:841
#define eigen_assert(x)
Definition: Macros.h:1047
#define EIGEN_STRONG_INLINE
Definition: Macros.h:927
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
Definition: Macros.h:1312
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
Definition: Memory.h:768
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:75
Expression of the transpose of a matrix.
Definition: Transpose.h:54
Definition: BlasUtil.h:270
Definition: BlasUtil.h:389
Definition: GeneralBlockPanelKernel.h:419
gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
Definition: GeneralMatrixMatrix.h:347
void initParallel(Index rows, Index cols, Index depth, Index num_threads)
Definition: GeneralMatrixMatrix.h:367
Definition: GeneralMatrixMatrix.h:248
Definition: GeneralMatrixMatrix.h:252
RhsScalar * blockB()
Definition: GeneralMatrixMatrix.h:275
Index kc() const
Definition: GeneralMatrixMatrix.h:272
Index mc() const
Definition: GeneralMatrixMatrix.h:270
Index m_mc
Definition: GeneralMatrixMatrix.h:260
level3_blocking()
Definition: GeneralMatrixMatrix.h:266
RhsScalar * m_blockB
Definition: GeneralMatrixMatrix.h:258
Index nc() const
Definition: GeneralMatrixMatrix.h:271
Index m_kc
Definition: GeneralMatrixMatrix.h:262
LhsScalar * blockA()
Definition: GeneralMatrixMatrix.h:274
Index m_nc
Definition: GeneralMatrixMatrix.h:261
LhsScalar * m_blockA
Definition: GeneralMatrixMatrix.h:257
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:319
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:321
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:66
constexpr common_t< T1, T2 > min(const T1 x, const T2 y) noexcept
Compile-time pairwise minimum function.
Definition: min.hpp:35
std::size_t UIntPtr
Definition: Meta.h:92
EIGEN_DEVICE_FUNC void aligned_delete(T *ptr, std::size_t size)
Definition: Memory.h:361
void parallelize_gemm(const Functor &func, Index rows, Index cols, Index depth, bool transpose)
Definition: Parallelizer.h:100
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const ResScalar &alpha, const Lhs &lhs, const Rhs &rhs)
Definition: BlasUtil.h:568
Namespace containing all symbols from the Eigen library.
Definition: Core:141
@ GemmProduct
Definition: Constants.h:500
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition: Constants.h:22
Definition: Eigen_Colamd.h:50
Definition: BFloat16.h:88
static constexpr uint64_t k2
Definition: Hashing.h:172
Definition: Constants.h:528
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:806
Definition: Parallelizer.h:80
Definition: AssignmentFunctors.h:46
const T type
Definition: Meta.h:214
Definition: AssignmentFunctors.h:21
Definition: BlasUtil.h:403
Then type
Definition: Meta.h:109
Definition: GeneralBlockPanelKernel.h:1058
Definition: GeneralMatrixMatrix.h:214
Dest & m_dest
Definition: GeneralMatrixMatrix.h:242
void initParallelSession(Index num_threads) const
Definition: GeneralMatrixMatrix.h:219
const Rhs & m_rhs
Definition: GeneralMatrixMatrix.h:241
Gemm::Traits Traits
Definition: GeneralMatrixMatrix.h:237
Scalar m_actualAlpha
Definition: GeneralMatrixMatrix.h:243
BlockingType & m_blocking
Definition: GeneralMatrixMatrix.h:244
gemm_functor(const Lhs &lhs, const Rhs &rhs, Dest &dest, const Scalar &actualAlpha, BlockingType &blocking)
Definition: GeneralMatrixMatrix.h:215
const Lhs & m_lhs
Definition: GeneralMatrixMatrix.h:240
void operator()(Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo< Index > *info=0) const
Definition: GeneralMatrixMatrix.h:225
Definition: BlasUtil.h:28
Definition: BlasUtil.h:25
static void run(Index rows, Index cols, Index depth, const LhsScalar *_lhs, Index lhsStride, const RhsScalar *_rhs, Index rhsStride, ResScalar *_res, Index resIncr, Index resStride, ResScalar alpha, level3_blocking< LhsScalar, RhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
Definition: GeneralMatrixMatrix.h:61
static EIGEN_STRONG_INLINE void run(Index rows, Index cols, Index depth, const LhsScalar *lhs, Index lhsStride, const RhsScalar *rhs, Index rhsStride, ResScalar *res, Index resIncr, Index resStride, ResScalar alpha, level3_blocking< RhsScalar, LhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
Definition: GeneralMatrixMatrix.h:30
internal::blas_traits< Lhs > LhsBlasTraits
Definition: GeneralMatrixMatrix.h:417
RhsBlasTraits::DirectLinearAccessType ActualRhsType
Definition: GeneralMatrixMatrix.h:422
LhsBlasTraits::DirectLinearAccessType ActualLhsType
Definition: GeneralMatrixMatrix.h:418
internal::remove_all< ActualRhsType >::type ActualRhsTypeCleaned
Definition: GeneralMatrixMatrix.h:423
static void subTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
Definition: GeneralMatrixMatrix.h:459
Product< Lhs, Rhs >::Scalar Scalar
Definition: GeneralMatrixMatrix.h:413
static void evalTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
Definition: GeneralMatrixMatrix.h:432
internal::blas_traits< Rhs > RhsBlasTraits
Definition: GeneralMatrixMatrix.h:421
static void addTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
Definition: GeneralMatrixMatrix.h:450
generic_product_impl< Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode > lazyproduct
Definition: GeneralMatrixMatrix.h:429
internal::remove_all< ActualLhsType >::type ActualLhsTypeCleaned
Definition: GeneralMatrixMatrix.h:419
static void scaleAndAddTo(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar &alpha)
Definition: GeneralMatrixMatrix.h:468
Definition: ProductEvaluators.h:344
Definition: ProductEvaluators.h:86
T type
Definition: Meta.h:126
Definition: AssignmentFunctors.h:67
Definition: Meta.h:96